Cargando…
Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort
BACKGROUND: To date, there has been no reliable in vitro test to either diagnose or differentiate nonsteroidal anti‐inflammatory drug (NSAID)–exacerbated respiratory disease (N‐ERD). The aim of the present study was to develop and validate an artificial neural network (ANN) for the prediction of N‐E...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383769/ https://www.ncbi.nlm.nih.gov/pubmed/32012310 http://dx.doi.org/10.1111/all.14214 |
_version_ | 1783563485192388608 |
---|---|
author | Tyrak, Katarzyna Ewa Pajdzik, Kinga Konduracka, Ewa Ćmiel, Adam Jakieła, Bogdan Celejewska‐Wójcik, Natalia Trąd, Gabriela Kot, Adrianna Urbańska, Anna Zabiegło, Ewa Kacorzyk, Radosław Kupryś‐Lipińska, Izabela Oleś, Krzysztof Kuna, Piotr Sanak, Marek Mastalerz, Lucyna |
author_facet | Tyrak, Katarzyna Ewa Pajdzik, Kinga Konduracka, Ewa Ćmiel, Adam Jakieła, Bogdan Celejewska‐Wójcik, Natalia Trąd, Gabriela Kot, Adrianna Urbańska, Anna Zabiegło, Ewa Kacorzyk, Radosław Kupryś‐Lipińska, Izabela Oleś, Krzysztof Kuna, Piotr Sanak, Marek Mastalerz, Lucyna |
author_sort | Tyrak, Katarzyna Ewa |
collection | PubMed |
description | BACKGROUND: To date, there has been no reliable in vitro test to either diagnose or differentiate nonsteroidal anti‐inflammatory drug (NSAID)–exacerbated respiratory disease (N‐ERD). The aim of the present study was to develop and validate an artificial neural network (ANN) for the prediction of N‐ERD in patients with asthma. METHODS: This study used a prospective database of patients with N‐ERD (n = 121) and aspirin‐tolerant (n = 82) who underwent aspirin challenge from May 2014 to May 2018. Eighteen parameters, including clinical characteristics, inflammatory phenotypes based on sputum cells, as well as eicosanoid levels in induced sputum supernatant (ISS) and urine were extracted for the ANN. RESULTS: The validation sensitivity of ANN was 94.12% (80.32%‐99.28%), specificity was 73.08% (52.21%‐88.43%), and accuracy was 85.00% (77.43%‐92.90%) for the prediction of N‐ERD. The area under the receiver operating curve was 0.83 (0.71‐0.90). CONCLUSIONS: The designed ANN model seems to have powerful prediction capabilities to provide diagnosis of N‐ERD. Although it cannot replace the gold‐standard aspirin challenge test, the implementation of the ANN might provide an added value for identification of patients with N‐ERD. External validation in a large cohort is needed to confirm our results. |
format | Online Article Text |
id | pubmed-7383769 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73837692020-07-27 Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort Tyrak, Katarzyna Ewa Pajdzik, Kinga Konduracka, Ewa Ćmiel, Adam Jakieła, Bogdan Celejewska‐Wójcik, Natalia Trąd, Gabriela Kot, Adrianna Urbańska, Anna Zabiegło, Ewa Kacorzyk, Radosław Kupryś‐Lipińska, Izabela Oleś, Krzysztof Kuna, Piotr Sanak, Marek Mastalerz, Lucyna Allergy ORIGINAL ARTICLES BACKGROUND: To date, there has been no reliable in vitro test to either diagnose or differentiate nonsteroidal anti‐inflammatory drug (NSAID)–exacerbated respiratory disease (N‐ERD). The aim of the present study was to develop and validate an artificial neural network (ANN) for the prediction of N‐ERD in patients with asthma. METHODS: This study used a prospective database of patients with N‐ERD (n = 121) and aspirin‐tolerant (n = 82) who underwent aspirin challenge from May 2014 to May 2018. Eighteen parameters, including clinical characteristics, inflammatory phenotypes based on sputum cells, as well as eicosanoid levels in induced sputum supernatant (ISS) and urine were extracted for the ANN. RESULTS: The validation sensitivity of ANN was 94.12% (80.32%‐99.28%), specificity was 73.08% (52.21%‐88.43%), and accuracy was 85.00% (77.43%‐92.90%) for the prediction of N‐ERD. The area under the receiver operating curve was 0.83 (0.71‐0.90). CONCLUSIONS: The designed ANN model seems to have powerful prediction capabilities to provide diagnosis of N‐ERD. Although it cannot replace the gold‐standard aspirin challenge test, the implementation of the ANN might provide an added value for identification of patients with N‐ERD. External validation in a large cohort is needed to confirm our results. John Wiley and Sons Inc. 2020-03-03 2020-07 /pmc/articles/PMC7383769/ /pubmed/32012310 http://dx.doi.org/10.1111/all.14214 Text en © 2020 The Authors. Allergy published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | ORIGINAL ARTICLES Tyrak, Katarzyna Ewa Pajdzik, Kinga Konduracka, Ewa Ćmiel, Adam Jakieła, Bogdan Celejewska‐Wójcik, Natalia Trąd, Gabriela Kot, Adrianna Urbańska, Anna Zabiegło, Ewa Kacorzyk, Radosław Kupryś‐Lipińska, Izabela Oleś, Krzysztof Kuna, Piotr Sanak, Marek Mastalerz, Lucyna Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort |
title | Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort |
title_full | Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort |
title_fullStr | Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort |
title_full_unstemmed | Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort |
title_short | Artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (N‐ERD) cohort |
title_sort | artificial neural network identifies nonsteroidal anti‐inflammatory drugs exacerbated respiratory disease (n‐erd) cohort |
topic | ORIGINAL ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383769/ https://www.ncbi.nlm.nih.gov/pubmed/32012310 http://dx.doi.org/10.1111/all.14214 |
work_keys_str_mv | AT tyrakkatarzynaewa artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT pajdzikkinga artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT kondurackaewa artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT cmieladam artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT jakiełabogdan artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT celejewskawojciknatalia artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT tradgabriela artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT kotadrianna artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT urbanskaanna artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT zabiegłoewa artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT kacorzykradosław artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT kupryslipinskaizabela artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT oleskrzysztof artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT kunapiotr artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT sanakmarek artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort AT mastalerzlucyna artificialneuralnetworkidentifiesnonsteroidalantiinflammatorydrugsexacerbatedrespiratorydiseasenerdcohort |