Cargando…

Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction

[Image: see text] Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stab...

Descripción completa

Detalles Bibliográficos
Autores principales: Wielend, Dominik, Vera-Hidalgo, Mariano, Seelajaroen, Hathaichanok, Sariciftci, Niyazi Serdar, Pérez, Emilio M., Whang, Dong Ryeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383929/
https://www.ncbi.nlm.nih.gov/pubmed/32573248
http://dx.doi.org/10.1021/acsami.0c06516
Descripción
Sumario:[Image: see text] Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H(2)O(2)). Using such AQ-MINT electrodes, 7 and 2 μmol of H(2)O(2) are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 μmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis.