Cargando…

Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction

[Image: see text] Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stab...

Descripción completa

Detalles Bibliográficos
Autores principales: Wielend, Dominik, Vera-Hidalgo, Mariano, Seelajaroen, Hathaichanok, Sariciftci, Niyazi Serdar, Pérez, Emilio M., Whang, Dong Ryeol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383929/
https://www.ncbi.nlm.nih.gov/pubmed/32573248
http://dx.doi.org/10.1021/acsami.0c06516
_version_ 1783563521515061248
author Wielend, Dominik
Vera-Hidalgo, Mariano
Seelajaroen, Hathaichanok
Sariciftci, Niyazi Serdar
Pérez, Emilio M.
Whang, Dong Ryeol
author_facet Wielend, Dominik
Vera-Hidalgo, Mariano
Seelajaroen, Hathaichanok
Sariciftci, Niyazi Serdar
Pérez, Emilio M.
Whang, Dong Ryeol
author_sort Wielend, Dominik
collection PubMed
description [Image: see text] Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H(2)O(2)). Using such AQ-MINT electrodes, 7 and 2 μmol of H(2)O(2) are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 μmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis.
format Online
Article
Text
id pubmed-7383929
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-73839292020-07-28 Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction Wielend, Dominik Vera-Hidalgo, Mariano Seelajaroen, Hathaichanok Sariciftci, Niyazi Serdar Pérez, Emilio M. Whang, Dong Ryeol ACS Appl Mater Interfaces [Image: see text] Mechanically interlocking redox-active anthraquinone onto single-walled carbon nanotubes (AQ-MINT) gives a new and advanced example of a noncovalent architecture for an electrochemical platform. Electrochemical studies of AQ-MINT as an electrode reveal enhanced electrochemical stability in both aqueous and organic solvents compared to physisorbed AQ-based electrodes. While maintaining the electrochemical properties of the parent anthraquinone molecules, we observe a stable oxygen reduction reaction to hydrogen peroxide (H(2)O(2)). Using such AQ-MINT electrodes, 7 and 2 μmol of H(2)O(2) are produced over 8 h under basic and neutral conditions, while the control system of SWCNTs produces 2.2 and 0.5 μmol, respectively. These results reveal the potential of this rotaxane-type immobilization approach for heterogenized electrocatalysis. American Chemical Society 2020-06-23 2020-07-22 /pmc/articles/PMC7383929/ /pubmed/32573248 http://dx.doi.org/10.1021/acsami.0c06516 Text en Copyright © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Wielend, Dominik
Vera-Hidalgo, Mariano
Seelajaroen, Hathaichanok
Sariciftci, Niyazi Serdar
Pérez, Emilio M.
Whang, Dong Ryeol
Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction
title Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction
title_full Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction
title_fullStr Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction
title_full_unstemmed Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction
title_short Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction
title_sort mechanically interlocked carbon nanotubes as a stable electrocatalytic platform for oxygen reduction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383929/
https://www.ncbi.nlm.nih.gov/pubmed/32573248
http://dx.doi.org/10.1021/acsami.0c06516
work_keys_str_mv AT wielenddominik mechanicallyinterlockedcarbonnanotubesasastableelectrocatalyticplatformforoxygenreduction
AT verahidalgomariano mechanicallyinterlockedcarbonnanotubesasastableelectrocatalyticplatformforoxygenreduction
AT seelajaroenhathaichanok mechanicallyinterlockedcarbonnanotubesasastableelectrocatalyticplatformforoxygenreduction
AT sariciftciniyaziserdar mechanicallyinterlockedcarbonnanotubesasastableelectrocatalyticplatformforoxygenreduction
AT perezemiliom mechanicallyinterlockedcarbonnanotubesasastableelectrocatalyticplatformforoxygenreduction
AT whangdongryeol mechanicallyinterlockedcarbonnanotubesasastableelectrocatalyticplatformforoxygenreduction