Cargando…
Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems
Fuel‐driven self‐assemblies are gaining ground for creating autonomous systems and materials, whose temporal behavior is preprogrammed by a reaction network. However, up to now there has been a lack of simple external control mechanisms of the transient behavior, at best using remote and benign ligh...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384039/ https://www.ncbi.nlm.nih.gov/pubmed/32232894 http://dx.doi.org/10.1002/anie.202003102 |
_version_ | 1783563542749773824 |
---|---|
author | Deng, Jie Bezold, Dominik Jessen, Henning J. Walther, Andreas |
author_facet | Deng, Jie Bezold, Dominik Jessen, Henning J. Walther, Andreas |
author_sort | Deng, Jie |
collection | PubMed |
description | Fuel‐driven self‐assemblies are gaining ground for creating autonomous systems and materials, whose temporal behavior is preprogrammed by a reaction network. However, up to now there has been a lack of simple external control mechanisms of the transient behavior, at best using remote and benign light control. Even more challenging is to use different wavelengths to modulate the reactivity of different components of the system, for example, as fuel or building blocks. Success would enable such systems to navigate along different trajectories in a wavelength‐dependent fashion. Herein, we introduce the first examples of light control in ATP‐fueled, dynamic covalent DNA polymerization systems organized in an enzymatic reaction network of concurrent ATP‐powered ligation and restriction. We demonstrate concepts for light activation and modulation by introducing caged ATP derivatives and caged DNA building blocks, making it possible to realize light‐activated fueling, self‐sorting in structure and behavior, and transition across different wavelength‐dependent dynamic steady states. |
format | Online Article Text |
id | pubmed-7384039 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73840392020-07-28 Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems Deng, Jie Bezold, Dominik Jessen, Henning J. Walther, Andreas Angew Chem Int Ed Engl Research Articles Fuel‐driven self‐assemblies are gaining ground for creating autonomous systems and materials, whose temporal behavior is preprogrammed by a reaction network. However, up to now there has been a lack of simple external control mechanisms of the transient behavior, at best using remote and benign light control. Even more challenging is to use different wavelengths to modulate the reactivity of different components of the system, for example, as fuel or building blocks. Success would enable such systems to navigate along different trajectories in a wavelength‐dependent fashion. Herein, we introduce the first examples of light control in ATP‐fueled, dynamic covalent DNA polymerization systems organized in an enzymatic reaction network of concurrent ATP‐powered ligation and restriction. We demonstrate concepts for light activation and modulation by introducing caged ATP derivatives and caged DNA building blocks, making it possible to realize light‐activated fueling, self‐sorting in structure and behavior, and transition across different wavelength‐dependent dynamic steady states. John Wiley and Sons Inc. 2020-05-18 2020-07-13 /pmc/articles/PMC7384039/ /pubmed/32232894 http://dx.doi.org/10.1002/anie.202003102 Text en © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Research Articles Deng, Jie Bezold, Dominik Jessen, Henning J. Walther, Andreas Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems |
title | Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems |
title_full | Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems |
title_fullStr | Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems |
title_full_unstemmed | Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems |
title_short | Multiple Light Control Mechanisms in ATP‐Fueled Non‐equilibrium DNA Systems |
title_sort | multiple light control mechanisms in atp‐fueled non‐equilibrium dna systems |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384039/ https://www.ncbi.nlm.nih.gov/pubmed/32232894 http://dx.doi.org/10.1002/anie.202003102 |
work_keys_str_mv | AT dengjie multiplelightcontrolmechanismsinatpfuelednonequilibriumdnasystems AT bezolddominik multiplelightcontrolmechanismsinatpfuelednonequilibriumdnasystems AT jessenhenningj multiplelightcontrolmechanismsinatpfuelednonequilibriumdnasystems AT waltherandreas multiplelightcontrolmechanismsinatpfuelednonequilibriumdnasystems |