Cargando…
Matching with time‐dependent treatments: A review and look forward
Observational studies of treatment effects attempt to mimic a randomized experiment by balancing the covariate distribution in treated and control groups, thus removing biases related to measured confounders. Methods such as weighting, matching, and stratification, with or without a propensity score...
Autores principales: | Thomas, Laine E., Yang, Siyun, Wojdyla, Daniel, Schaubel, Douglas E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384144/ https://www.ncbi.nlm.nih.gov/pubmed/32242973 http://dx.doi.org/10.1002/sim.8533 |
Ejemplares similares
-
Using fractional polynomials and restricted cubic splines to model non‐proportional hazards or time‐varying covariate effects in the Cox regression model
por: Austin, Peter C., et al.
Publicado: (2021) -
A tutorial on individualized treatment effect prediction from randomized trials with a binary endpoint
por: Hoogland, Jeroen, et al.
Publicado: (2021) -
Targeted maximum likelihood estimation for a binary treatment: A tutorial
por: Luque‐Fernandez, Miguel Angel, et al.
Publicado: (2018) -
The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments
por: Austin, Peter C
Publicado: (2014) -
Individual participant data meta‐analysis to examine interactions between treatment effect and participant‐level covariates: Statistical recommendations for conduct and planning
por: Riley, Richard D., et al.
Publicado: (2020)