Cargando…
Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects
Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewic...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384179/ https://www.ncbi.nlm.nih.gov/pubmed/32515077 http://dx.doi.org/10.1111/gcb.15151 |
_version_ | 1783563575200055296 |
---|---|
author | Nuijten, Rascha J. M. Wood, Kevin A. Haitjema, Trinus Rees, Eileen C. Nolet, Bart A. |
author_facet | Nuijten, Rascha J. M. Wood, Kevin A. Haitjema, Trinus Rees, Eileen C. Nolet, Bart A. |
author_sort | Nuijten, Rascha J. M. |
collection | PubMed |
description | Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewickii) using different methods, analysing nearly 50 years of resighting data (1970–2017). In this period the wintering area of the Bewick's swans shifted eastwards (‘short‐stopping’) at a rate of ~13 km/year, thereby shortening individual migration distance on an average by 353 km. Concurrently, the time spent at the wintering grounds has reduced (‘short‐staying’) by ~38 days since 1989. We show that individuals are consistent in their migratory timing in winter, indicating that the frequency of individuals with different migratory schedules has changed over time (a generational shift). In contrast, for short‐stopping we found evidence for both individual plasticity (individuals decrease their migration distances over their lifetime) and generational shift. Additional analysis of swan resightings with temperature data showed that, throughout the winter, Bewick's swans frequent areas where air temperatures are c. 5.5°C. These areas have also shifted eastwards over time, hinting that climate warming is a contributing factor behind the observed changes in the swans' distribution. The occurrence of winter short‐stopping and short‐staying suggests that this species is to some extent able to adjust to climate warming, but benefits or repercussions at other times of the annual cycle need to be assessed. Furthermore, these phenomena could lead to changes in abundance in certain areas, with resulting monitoring and conservation implications. Understanding the processes and driving mechanisms behind population changes therefore is important for population management, both locally and across the species range. |
format | Online Article Text |
id | pubmed-7384179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73841792020-07-28 Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects Nuijten, Rascha J. M. Wood, Kevin A. Haitjema, Trinus Rees, Eileen C. Nolet, Bart A. Glob Chang Biol Primary Research Articles Range shifts and phenological change are two processes by which organisms respond to environmental warming. Understanding the mechanisms that drive these changes is key for optimal conservation and management. Here we study both processes in the migratory Bewick's swan (Cygnus columbianus bewickii) using different methods, analysing nearly 50 years of resighting data (1970–2017). In this period the wintering area of the Bewick's swans shifted eastwards (‘short‐stopping’) at a rate of ~13 km/year, thereby shortening individual migration distance on an average by 353 km. Concurrently, the time spent at the wintering grounds has reduced (‘short‐staying’) by ~38 days since 1989. We show that individuals are consistent in their migratory timing in winter, indicating that the frequency of individuals with different migratory schedules has changed over time (a generational shift). In contrast, for short‐stopping we found evidence for both individual plasticity (individuals decrease their migration distances over their lifetime) and generational shift. Additional analysis of swan resightings with temperature data showed that, throughout the winter, Bewick's swans frequent areas where air temperatures are c. 5.5°C. These areas have also shifted eastwards over time, hinting that climate warming is a contributing factor behind the observed changes in the swans' distribution. The occurrence of winter short‐stopping and short‐staying suggests that this species is to some extent able to adjust to climate warming, but benefits or repercussions at other times of the annual cycle need to be assessed. Furthermore, these phenomena could lead to changes in abundance in certain areas, with resulting monitoring and conservation implications. Understanding the processes and driving mechanisms behind population changes therefore is important for population management, both locally and across the species range. John Wiley and Sons Inc. 2020-06-09 2020-08 /pmc/articles/PMC7384179/ /pubmed/32515077 http://dx.doi.org/10.1111/gcb.15151 Text en © 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Primary Research Articles Nuijten, Rascha J. M. Wood, Kevin A. Haitjema, Trinus Rees, Eileen C. Nolet, Bart A. Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects |
title | Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects |
title_full | Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects |
title_fullStr | Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects |
title_full_unstemmed | Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects |
title_short | Concurrent shifts in wintering distribution and phenology in migratory swans: Individual and generational effects |
title_sort | concurrent shifts in wintering distribution and phenology in migratory swans: individual and generational effects |
topic | Primary Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384179/ https://www.ncbi.nlm.nih.gov/pubmed/32515077 http://dx.doi.org/10.1111/gcb.15151 |
work_keys_str_mv | AT nuijtenraschajm concurrentshiftsinwinteringdistributionandphenologyinmigratoryswansindividualandgenerationaleffects AT woodkevina concurrentshiftsinwinteringdistributionandphenologyinmigratoryswansindividualandgenerationaleffects AT haitjematrinus concurrentshiftsinwinteringdistributionandphenologyinmigratoryswansindividualandgenerationaleffects AT reeseileenc concurrentshiftsinwinteringdistributionandphenologyinmigratoryswansindividualandgenerationaleffects AT noletbarta concurrentshiftsinwinteringdistributionandphenologyinmigratoryswansindividualandgenerationaleffects |