Cargando…
Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics
BACKGROUND: Single-cell RNA sequencing is a powerful tool for characterizing cellular heterogeneity in gene expression. However, high variability and a large number of zero counts present challenges for analysis and interpretation. There is substantial controversy over the origins and proper treatme...
Autores principales: | Choi, Kwangbom, Chen, Yang, Skelly, Daniel A., Churchill, Gary A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384222/ https://www.ncbi.nlm.nih.gov/pubmed/32718323 http://dx.doi.org/10.1186/s13059-020-02103-2 |
Ejemplares similares
-
Publisher Correction: Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics
por: Choi, Kwangbom, et al.
Publicado: (2020) -
A Bayesian mixture model for the analysis of allelic expression in single cells
por: Choi, Kwangbom, et al.
Publicado: (2019) -
Bayesian clustering of multiple zero-inflated outcomes
por: Franzolini, Beatrice, et al.
Publicado: (2023) -
Modeling zero inflation is not necessary for spatial transcriptomics
por: Zhao, Peiyao, et al.
Publicado: (2022) -
Structural zeroes and zero-inflated models
por: HE, Hua, et al.
Publicado: (2014)