Cargando…

Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?

This research argued for estimating the Capital Asset Pricing Model (CAPM) using daily and medium-horizon data over monthly and short horizon-data. Using a Gibbs sample, the Bayesian framework via both parametric and non-parametric Bayes estimators, confidence interval approach, and six data sets (t...

Descripción completa

Detalles Bibliográficos
Autores principales: Pham, Chinh Duc, Phuoc, Le Tan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384329/
https://www.ncbi.nlm.nih.gov/pubmed/32743085
http://dx.doi.org/10.1016/j.heliyon.2020.e04339
_version_ 1783563594768580608
author Pham, Chinh Duc
Phuoc, Le Tan
author_facet Pham, Chinh Duc
Phuoc, Le Tan
author_sort Pham, Chinh Duc
collection PubMed
description This research argued for estimating the Capital Asset Pricing Model (CAPM) using daily and medium-horizon data over monthly and short horizon-data. Using a Gibbs sample, the Bayesian framework via both parametric and non-parametric Bayes estimators, confidence interval approach, and six data sets (two daily, two weekly, and two monthly data) from a sample of 150 randomly selected S&P 500 stocks from 2007 – 2019, the empirical results showed that the CAPM using daily data yielded a statistically significant higher model fit and smaller Beta standard deviation, model error, and Alpha compared with monthly data. The CAPM using medium-horizon data yielded a statistically significant higher model fit, smaller Beta standard deviation and Alpha, and much less zeroed Betas compared with short-horizon data. These findings show 1) daily data is more reliable and efficient, has higher forecasting power, and fits better with the assumption of market efficiency compared with monthly data. 2) Medium-horizon data is more reliable and efficient, has more explanatory power, and fits better with the assumption of market efficiency compared with monthly data. Therefore, these findings challenge the common practices of using monthly (quarterly/annually) and short-horizon data among the practitioners and researchers in asset pricing work.
format Online
Article
Text
id pubmed-7384329
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-73843292020-07-30 Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice? Pham, Chinh Duc Phuoc, Le Tan Heliyon Article This research argued for estimating the Capital Asset Pricing Model (CAPM) using daily and medium-horizon data over monthly and short horizon-data. Using a Gibbs sample, the Bayesian framework via both parametric and non-parametric Bayes estimators, confidence interval approach, and six data sets (two daily, two weekly, and two monthly data) from a sample of 150 randomly selected S&P 500 stocks from 2007 – 2019, the empirical results showed that the CAPM using daily data yielded a statistically significant higher model fit and smaller Beta standard deviation, model error, and Alpha compared with monthly data. The CAPM using medium-horizon data yielded a statistically significant higher model fit, smaller Beta standard deviation and Alpha, and much less zeroed Betas compared with short-horizon data. These findings show 1) daily data is more reliable and efficient, has higher forecasting power, and fits better with the assumption of market efficiency compared with monthly data. 2) Medium-horizon data is more reliable and efficient, has more explanatory power, and fits better with the assumption of market efficiency compared with monthly data. Therefore, these findings challenge the common practices of using monthly (quarterly/annually) and short-horizon data among the practitioners and researchers in asset pricing work. Elsevier 2020-07-12 /pmc/articles/PMC7384329/ /pubmed/32743085 http://dx.doi.org/10.1016/j.heliyon.2020.e04339 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Pham, Chinh Duc
Phuoc, Le Tan
Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?
title Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?
title_full Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?
title_fullStr Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?
title_full_unstemmed Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?
title_short Is estimating the Capital Asset Pricing Model using monthly and short-horizon data a good choice?
title_sort is estimating the capital asset pricing model using monthly and short-horizon data a good choice?
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384329/
https://www.ncbi.nlm.nih.gov/pubmed/32743085
http://dx.doi.org/10.1016/j.heliyon.2020.e04339
work_keys_str_mv AT phamchinhduc isestimatingthecapitalassetpricingmodelusingmonthlyandshorthorizondataagoodchoice
AT phuocletan isestimatingthecapitalassetpricingmodelusingmonthlyandshorthorizondataagoodchoice