Cargando…

Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions

We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations for SARS-CoV-2. Our approach optimizes the presentation likelihood of a diverse set of vaccine peptides conditioned on a target human-population HLA haplotype distribution and expected epitope dr...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ge, Carter, Brandon, Bricken, Trenton, Jain, Siddhartha, Viard, Mathias, Carrington, Mary, Gifford, David K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384425/
https://www.ncbi.nlm.nih.gov/pubmed/32721383
http://dx.doi.org/10.1016/j.cels.2020.06.009
Descripción
Sumario:We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations for SARS-CoV-2. Our approach optimizes the presentation likelihood of a diverse set of vaccine peptides conditioned on a target human-population HLA haplotype distribution and expected epitope drift. Our proposed SARS-CoV-2 MHC class I vaccine formulations provide 93.21% predicted population coverage with at least five vaccine peptide-HLA average hits per person (≥ 1 peptide: 99.91%) with all vaccine peptides perfectly conserved across 4,690 geographically sampled SARS-CoV-2 genomes. Our proposed MHC class II vaccine formulations provide 97.21% predicted coverage with at least five vaccine peptide-HLA average hits per person with all peptides having an observed mutation probability of ≤ 0.001. We provide an open-source implementation of our design methods (OptiVax), vaccine evaluation tool (EvalVax), as well as the data used in our design efforts here: https://github.com/gifford-lab/optivax.