Cargando…

Entrofy your cohort: A transparent method for diverse cohort selection

Selecting a cohort from a set of candidates is a common task within and beyond academia. Admitting students, awarding grants, and choosing speakers for a conference are situations where human biases may affect the selection of any particular candidate, and, thereby the composition of the final cohor...

Descripción completa

Detalles Bibliográficos
Autores principales: Huppenkothen, Daniela, McFee, Brian, Norén, Laura
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384611/
https://www.ncbi.nlm.nih.gov/pubmed/32716929
http://dx.doi.org/10.1371/journal.pone.0231939
_version_ 1783563633631952896
author Huppenkothen, Daniela
McFee, Brian
Norén, Laura
author_facet Huppenkothen, Daniela
McFee, Brian
Norén, Laura
author_sort Huppenkothen, Daniela
collection PubMed
description Selecting a cohort from a set of candidates is a common task within and beyond academia. Admitting students, awarding grants, and choosing speakers for a conference are situations where human biases may affect the selection of any particular candidate, and, thereby the composition of the final cohort. In this paper, we propose a new algorithm, entrofy, designed to be part of a human-in-the-loop decision making strategy aimed at making cohort selection as just, transparent, and accountable as possible. We suggest embedding entrofy in a two-step selection procedure. During a merit review, the committee selects all applicants, submissions, or other entities that meet their merit-based criteria. This often yields a cohort larger than the admissible number. In the second stage, the target cohort can be chosen from this meritorious pool via a new algorithm and software tool called entrofy. entrofy optimizes differences across an assignable set of categories selected by the human committee. Criteria could include academic discipline, home country, experience with certain technologies, or other quantifiable characteristics. The entrofy algorithm then yields the approximation of pre-defined target proportions for each category by solving the tie-breaking problem with provable performance guarantees. We show how entrofy selects cohorts according to pre-determined characteristics in simulated sets of applications and demonstrate its use in a case study of Astro Hack Week. This two stage candidate and cohort selection process allows human judgment and debate to guide the assessment of candidates’ merit in step 1. Then the human committee defines relevant diversity criteria which will be used as computational parameters in entrofy. Once the parameters are defined, the set of candidates who meet the minimum threshold for merit are passed through the entrofy cohort selection procedure in step 2 which yields a cohort of a composition as close as possible to the computational parameters defined by the committee. This process has the benefit of separating the meritorious assessment of candidates from certain elements of their diversity and from some considerations around cohort composition. It also increases the transparency and auditability of the process, which enables, but does not guarantee, fairness. Splitting merit and diversity considerations into their own assessment stages makes it easier to explain why a given candidate was selected or rejected, though it does not eliminate the possibility of objectionable bias.
format Online
Article
Text
id pubmed-7384611
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-73846112020-08-05 Entrofy your cohort: A transparent method for diverse cohort selection Huppenkothen, Daniela McFee, Brian Norén, Laura PLoS One Research Article Selecting a cohort from a set of candidates is a common task within and beyond academia. Admitting students, awarding grants, and choosing speakers for a conference are situations where human biases may affect the selection of any particular candidate, and, thereby the composition of the final cohort. In this paper, we propose a new algorithm, entrofy, designed to be part of a human-in-the-loop decision making strategy aimed at making cohort selection as just, transparent, and accountable as possible. We suggest embedding entrofy in a two-step selection procedure. During a merit review, the committee selects all applicants, submissions, or other entities that meet their merit-based criteria. This often yields a cohort larger than the admissible number. In the second stage, the target cohort can be chosen from this meritorious pool via a new algorithm and software tool called entrofy. entrofy optimizes differences across an assignable set of categories selected by the human committee. Criteria could include academic discipline, home country, experience with certain technologies, or other quantifiable characteristics. The entrofy algorithm then yields the approximation of pre-defined target proportions for each category by solving the tie-breaking problem with provable performance guarantees. We show how entrofy selects cohorts according to pre-determined characteristics in simulated sets of applications and demonstrate its use in a case study of Astro Hack Week. This two stage candidate and cohort selection process allows human judgment and debate to guide the assessment of candidates’ merit in step 1. Then the human committee defines relevant diversity criteria which will be used as computational parameters in entrofy. Once the parameters are defined, the set of candidates who meet the minimum threshold for merit are passed through the entrofy cohort selection procedure in step 2 which yields a cohort of a composition as close as possible to the computational parameters defined by the committee. This process has the benefit of separating the meritorious assessment of candidates from certain elements of their diversity and from some considerations around cohort composition. It also increases the transparency and auditability of the process, which enables, but does not guarantee, fairness. Splitting merit and diversity considerations into their own assessment stages makes it easier to explain why a given candidate was selected or rejected, though it does not eliminate the possibility of objectionable bias. Public Library of Science 2020-07-27 /pmc/articles/PMC7384611/ /pubmed/32716929 http://dx.doi.org/10.1371/journal.pone.0231939 Text en © 2020 Huppenkothen et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Huppenkothen, Daniela
McFee, Brian
Norén, Laura
Entrofy your cohort: A transparent method for diverse cohort selection
title Entrofy your cohort: A transparent method for diverse cohort selection
title_full Entrofy your cohort: A transparent method for diverse cohort selection
title_fullStr Entrofy your cohort: A transparent method for diverse cohort selection
title_full_unstemmed Entrofy your cohort: A transparent method for diverse cohort selection
title_short Entrofy your cohort: A transparent method for diverse cohort selection
title_sort entrofy your cohort: a transparent method for diverse cohort selection
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384611/
https://www.ncbi.nlm.nih.gov/pubmed/32716929
http://dx.doi.org/10.1371/journal.pone.0231939
work_keys_str_mv AT huppenkothendaniela entrofyyourcohortatransparentmethodfordiversecohortselection
AT mcfeebrian entrofyyourcohortatransparentmethodfordiversecohortselection
AT norenlaura entrofyyourcohortatransparentmethodfordiversecohortselection