Cargando…
Machine learning versus conventional clinical methods in guiding management of heart failure patients—a systematic review
Machine learning (ML) algorithms “learn” information directly from data, and their performance improves proportionally with the number of high-quality samples. The aim of our systematic review is to present the state of the art regarding the implementation of ML techniques in the management of heart...
Autores principales: | Bazoukis, George, Stavrakis, Stavros, Zhou, Jiandong, Bollepalli, Sandeep Chandra, Tse, Gary, Zhang, Qingpeng, Singh, Jagmeet P., Armoundas, Antonis A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7384870/ https://www.ncbi.nlm.nih.gov/pubmed/32720083 http://dx.doi.org/10.1007/s10741-020-10007-3 |
Ejemplares similares
-
Microvolt T-Wave Alternans Is Modulated by Acute Low-Level Tragus Stimulation in Patients With Ischemic Cardiomyopathy and Heart Failure
por: Kulkarni, Kanchan, et al.
Publicado: (2021) -
Low‐Level Tragus Stimulation Modulates Atrial Alternans and Fibrillation Burden in Patients With Paroxysmal Atrial Fibrillation
por: Kulkarni, Kanchan, et al.
Publicado: (2021) -
Machine learning techniques for arrhythmic risk stratification: a review of the literature
por: Chung, Cheuk To, et al.
Publicado: (2022) -
Derivation of an electronic frailty index for predicting short‐term mortality in heart failure: a machine learning approach
por: Ju, Chengsheng, et al.
Publicado: (2021) -
Real‐Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks
por: Bollepalli, Sandeep Chandra, et al.
Publicado: (2021)