Cargando…
A Note on Exploratory Item Factor Analysis by Singular Value Decomposition
We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika 84:124–146, 2019b) for exploratory item factor analysis (IFA). This algorithm estimates a multidimensional IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in...
Autores principales: | Zhang, Haoran, Chen, Yunxiao, Li, Xiaoou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385012/ https://www.ncbi.nlm.nih.gov/pubmed/32451743 http://dx.doi.org/10.1007/s11336-020-09704-7 |
Ejemplares similares
-
A Note on Likelihood Ratio Tests for Models with Latent Variables
por: Chen, Yunxiao, et al.
Publicado: (2020) -
DIF Statistical Inference Without Knowing Anchoring Items
por: Chen, Yunxiao, et al.
Publicado: (2023) -
Singular value decomposition-based regression identifies activation of endogenous signaling pathways in vivo
por: Liu, Zhandong, et al.
Publicado: (2008) -
Mining Gene Expression Profiles: An Integrated Implementation of Kernel Principal Component Analysis and Singular Value Decomposition
por: Reverter, Ferran, et al.
Publicado: (2010) -
Factor Tree Copula Models for Item Response Data
por: Kadhem, Sayed H., et al.
Publicado: (2023)