Cargando…
VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heter...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385162/ https://www.ncbi.nlm.nih.gov/pubmed/32719375 http://dx.doi.org/10.1038/s41467-020-17569-8 |
_version_ | 1783563725443170304 |
---|---|
author | Stanley, Natalie Stelzer, Ina A. Tsai, Amy S. Fallahzadeh, Ramin Ganio, Edward Becker, Martin Phongpreecha, Thanaphong Nassar, Huda Ghaemi, Sajjad Maric, Ivana Culos, Anthony Chang, Alan L. Xenochristou, Maria Han, Xiaoyuan Espinosa, Camilo Rumer, Kristen Peterson, Laura Verdonk, Franck Gaudilliere, Dyani Tsai, Eileen Feyaerts, Dorien Einhaus, Jakob Ando, Kazuo Wong, Ronald J. Obermoser, Gerlinde Shaw, Gary M. Stevenson, David K. Angst, Martin S. Gaudilliere, Brice Aghaeepour, Nima |
author_facet | Stanley, Natalie Stelzer, Ina A. Tsai, Amy S. Fallahzadeh, Ramin Ganio, Edward Becker, Martin Phongpreecha, Thanaphong Nassar, Huda Ghaemi, Sajjad Maric, Ivana Culos, Anthony Chang, Alan L. Xenochristou, Maria Han, Xiaoyuan Espinosa, Camilo Rumer, Kristen Peterson, Laura Verdonk, Franck Gaudilliere, Dyani Tsai, Eileen Feyaerts, Dorien Einhaus, Jakob Ando, Kazuo Wong, Ronald J. Obermoser, Gerlinde Shaw, Gary M. Stevenson, David K. Angst, Martin S. Gaudilliere, Brice Aghaeepour, Nima |
author_sort | Stanley, Natalie |
collection | PubMed |
description | High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters. |
format | Online Article Text |
id | pubmed-7385162 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-73851622020-08-12 VoPo leverages cellular heterogeneity for predictive modeling of single-cell data Stanley, Natalie Stelzer, Ina A. Tsai, Amy S. Fallahzadeh, Ramin Ganio, Edward Becker, Martin Phongpreecha, Thanaphong Nassar, Huda Ghaemi, Sajjad Maric, Ivana Culos, Anthony Chang, Alan L. Xenochristou, Maria Han, Xiaoyuan Espinosa, Camilo Rumer, Kristen Peterson, Laura Verdonk, Franck Gaudilliere, Dyani Tsai, Eileen Feyaerts, Dorien Einhaus, Jakob Ando, Kazuo Wong, Ronald J. Obermoser, Gerlinde Shaw, Gary M. Stevenson, David K. Angst, Martin S. Gaudilliere, Brice Aghaeepour, Nima Nat Commun Article High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters. Nature Publishing Group UK 2020-07-27 /pmc/articles/PMC7385162/ /pubmed/32719375 http://dx.doi.org/10.1038/s41467-020-17569-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Stanley, Natalie Stelzer, Ina A. Tsai, Amy S. Fallahzadeh, Ramin Ganio, Edward Becker, Martin Phongpreecha, Thanaphong Nassar, Huda Ghaemi, Sajjad Maric, Ivana Culos, Anthony Chang, Alan L. Xenochristou, Maria Han, Xiaoyuan Espinosa, Camilo Rumer, Kristen Peterson, Laura Verdonk, Franck Gaudilliere, Dyani Tsai, Eileen Feyaerts, Dorien Einhaus, Jakob Ando, Kazuo Wong, Ronald J. Obermoser, Gerlinde Shaw, Gary M. Stevenson, David K. Angst, Martin S. Gaudilliere, Brice Aghaeepour, Nima VoPo leverages cellular heterogeneity for predictive modeling of single-cell data |
title | VoPo leverages cellular heterogeneity for predictive modeling of single-cell data |
title_full | VoPo leverages cellular heterogeneity for predictive modeling of single-cell data |
title_fullStr | VoPo leverages cellular heterogeneity for predictive modeling of single-cell data |
title_full_unstemmed | VoPo leverages cellular heterogeneity for predictive modeling of single-cell data |
title_short | VoPo leverages cellular heterogeneity for predictive modeling of single-cell data |
title_sort | vopo leverages cellular heterogeneity for predictive modeling of single-cell data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385162/ https://www.ncbi.nlm.nih.gov/pubmed/32719375 http://dx.doi.org/10.1038/s41467-020-17569-8 |
work_keys_str_mv | AT stanleynatalie vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT stelzerinaa vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT tsaiamys vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT fallahzadehramin vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT ganioedward vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT beckermartin vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT phongpreechathanaphong vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT nassarhuda vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT ghaemisajjad vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT maricivana vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT culosanthony vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT changalanl vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT xenochristoumaria vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT hanxiaoyuan vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT espinosacamilo vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT rumerkristen vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT petersonlaura vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT verdonkfranck vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT gaudillieredyani vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT tsaieileen vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT feyaertsdorien vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT einhausjakob vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT andokazuo vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT wongronaldj vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT obermosergerlinde vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT shawgarym vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT stevensondavidk vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT angstmartins vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT gaudillierebrice vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata AT aghaeepournima vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata |