Cargando…

VoPo leverages cellular heterogeneity for predictive modeling of single-cell data

High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heter...

Descripción completa

Detalles Bibliográficos
Autores principales: Stanley, Natalie, Stelzer, Ina A., Tsai, Amy S., Fallahzadeh, Ramin, Ganio, Edward, Becker, Martin, Phongpreecha, Thanaphong, Nassar, Huda, Ghaemi, Sajjad, Maric, Ivana, Culos, Anthony, Chang, Alan L., Xenochristou, Maria, Han, Xiaoyuan, Espinosa, Camilo, Rumer, Kristen, Peterson, Laura, Verdonk, Franck, Gaudilliere, Dyani, Tsai, Eileen, Feyaerts, Dorien, Einhaus, Jakob, Ando, Kazuo, Wong, Ronald J., Obermoser, Gerlinde, Shaw, Gary M., Stevenson, David K., Angst, Martin S., Gaudilliere, Brice, Aghaeepour, Nima
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385162/
https://www.ncbi.nlm.nih.gov/pubmed/32719375
http://dx.doi.org/10.1038/s41467-020-17569-8
_version_ 1783563725443170304
author Stanley, Natalie
Stelzer, Ina A.
Tsai, Amy S.
Fallahzadeh, Ramin
Ganio, Edward
Becker, Martin
Phongpreecha, Thanaphong
Nassar, Huda
Ghaemi, Sajjad
Maric, Ivana
Culos, Anthony
Chang, Alan L.
Xenochristou, Maria
Han, Xiaoyuan
Espinosa, Camilo
Rumer, Kristen
Peterson, Laura
Verdonk, Franck
Gaudilliere, Dyani
Tsai, Eileen
Feyaerts, Dorien
Einhaus, Jakob
Ando, Kazuo
Wong, Ronald J.
Obermoser, Gerlinde
Shaw, Gary M.
Stevenson, David K.
Angst, Martin S.
Gaudilliere, Brice
Aghaeepour, Nima
author_facet Stanley, Natalie
Stelzer, Ina A.
Tsai, Amy S.
Fallahzadeh, Ramin
Ganio, Edward
Becker, Martin
Phongpreecha, Thanaphong
Nassar, Huda
Ghaemi, Sajjad
Maric, Ivana
Culos, Anthony
Chang, Alan L.
Xenochristou, Maria
Han, Xiaoyuan
Espinosa, Camilo
Rumer, Kristen
Peterson, Laura
Verdonk, Franck
Gaudilliere, Dyani
Tsai, Eileen
Feyaerts, Dorien
Einhaus, Jakob
Ando, Kazuo
Wong, Ronald J.
Obermoser, Gerlinde
Shaw, Gary M.
Stevenson, David K.
Angst, Martin S.
Gaudilliere, Brice
Aghaeepour, Nima
author_sort Stanley, Natalie
collection PubMed
description High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters.
format Online
Article
Text
id pubmed-7385162
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-73851622020-08-12 VoPo leverages cellular heterogeneity for predictive modeling of single-cell data Stanley, Natalie Stelzer, Ina A. Tsai, Amy S. Fallahzadeh, Ramin Ganio, Edward Becker, Martin Phongpreecha, Thanaphong Nassar, Huda Ghaemi, Sajjad Maric, Ivana Culos, Anthony Chang, Alan L. Xenochristou, Maria Han, Xiaoyuan Espinosa, Camilo Rumer, Kristen Peterson, Laura Verdonk, Franck Gaudilliere, Dyani Tsai, Eileen Feyaerts, Dorien Einhaus, Jakob Ando, Kazuo Wong, Ronald J. Obermoser, Gerlinde Shaw, Gary M. Stevenson, David K. Angst, Martin S. Gaudilliere, Brice Aghaeepour, Nima Nat Commun Article High-throughput single-cell analysis technologies produce an abundance of data that is critical for profiling the heterogeneity of cellular systems. We introduce VoPo (https://github.com/stanleyn/VoPo), a machine learning algorithm for predictive modeling and comprehensive visualization of the heterogeneity captured in large single-cell datasets. In three mass cytometry datasets, with the largest measuring hundreds of millions of cells over hundreds of samples, VoPo defines phenotypically and functionally homogeneous cell populations. VoPo further outperforms state-of-the-art machine learning algorithms in classification tasks, and identified immune-correlates of clinically-relevant parameters. Nature Publishing Group UK 2020-07-27 /pmc/articles/PMC7385162/ /pubmed/32719375 http://dx.doi.org/10.1038/s41467-020-17569-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Stanley, Natalie
Stelzer, Ina A.
Tsai, Amy S.
Fallahzadeh, Ramin
Ganio, Edward
Becker, Martin
Phongpreecha, Thanaphong
Nassar, Huda
Ghaemi, Sajjad
Maric, Ivana
Culos, Anthony
Chang, Alan L.
Xenochristou, Maria
Han, Xiaoyuan
Espinosa, Camilo
Rumer, Kristen
Peterson, Laura
Verdonk, Franck
Gaudilliere, Dyani
Tsai, Eileen
Feyaerts, Dorien
Einhaus, Jakob
Ando, Kazuo
Wong, Ronald J.
Obermoser, Gerlinde
Shaw, Gary M.
Stevenson, David K.
Angst, Martin S.
Gaudilliere, Brice
Aghaeepour, Nima
VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
title VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
title_full VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
title_fullStr VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
title_full_unstemmed VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
title_short VoPo leverages cellular heterogeneity for predictive modeling of single-cell data
title_sort vopo leverages cellular heterogeneity for predictive modeling of single-cell data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385162/
https://www.ncbi.nlm.nih.gov/pubmed/32719375
http://dx.doi.org/10.1038/s41467-020-17569-8
work_keys_str_mv AT stanleynatalie vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT stelzerinaa vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT tsaiamys vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT fallahzadehramin vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT ganioedward vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT beckermartin vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT phongpreechathanaphong vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT nassarhuda vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT ghaemisajjad vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT maricivana vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT culosanthony vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT changalanl vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT xenochristoumaria vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT hanxiaoyuan vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT espinosacamilo vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT rumerkristen vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT petersonlaura vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT verdonkfranck vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT gaudillieredyani vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT tsaieileen vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT feyaertsdorien vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT einhausjakob vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT andokazuo vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT wongronaldj vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT obermosergerlinde vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT shawgarym vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT stevensondavidk vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT angstmartins vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT gaudillierebrice vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata
AT aghaeepournima vopoleveragescellularheterogeneityforpredictivemodelingofsinglecelldata