Cargando…
Deep Learning Frameworks for Rapid Gram Stain Image Data Interpretation: Protocol for a Retrospective Data Analysis
BACKGROUND: In recent years, remarkable progress has been made in deep learning technology and successful use cases have been introduced in the medical domain. However, not many studies have considered high-performance computing to fully appreciate the capability of deep learning technology. OBJECTI...
Autores principales: | Kim, Hee, Ganslandt, Thomas, Miethke, Thomas, Neumaier, Michael, Kittel, Maximilian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385633/ https://www.ncbi.nlm.nih.gov/pubmed/32673276 http://dx.doi.org/10.2196/16843 |
Ejemplares similares
-
Lightweight Visual Transformers Outperform Convolutional Neural Networks for Gram-Stained Image Classification: An Empirical Study
por: Kim, Hee E., et al.
Publicado: (2023) -
Rapid Convolutional Neural Networks for Gram-Stained Image Classification at Inference Time on Mobile Devices: Empirical Study from Transfer Learning to Optimization
por: Kim, Hee E., et al.
Publicado: (2022) -
Approaches and Criteria for Provenance in Biomedical Data Sets and Workflows: Protocol for a Scoping Review
por: Gierend, Kerstin, et al.
Publicado: (2021) -
Data Quality– and Utility-Compliant Anonymization of Common Data Model–Harmonized Electronic Health Record Data: Protocol for a Scoping Review
por: Kamdje Wabo, Gaetan, et al.
Publicado: (2023) -
Rapid Electrophoretic Staining and Destaining of Polyacrylamide Gels
por: Motojima, Fumihiro
Publicado: (2018)