Cargando…
Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain
Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa gl...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385938/ https://www.ncbi.nlm.nih.gov/pubmed/32725381 http://dx.doi.org/10.1007/s12192-020-01134-9 |
_version_ | 1783563867046019072 |
---|---|
author | Dores-Silva, Paulo Roberto Cauvi, David M. Coto, Amanda L. S. Kiraly, Vanessa T. R. Borges, Júlio C. De Maio, Antonio |
author_facet | Dores-Silva, Paulo Roberto Cauvi, David M. Coto, Amanda L. S. Kiraly, Vanessa T. R. Borges, Júlio C. De Maio, Antonio |
author_sort | Dores-Silva, Paulo Roberto |
collection | PubMed |
description | Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment. Surface HSPA5 has been proposed to have various roles, such as receptor-mediated signal transduction, a co-receptor for soluble ligands, as well as a participant in tumor survival, proliferation, and resistance. Recently, surface HSPA5 has been reported to be a potential receptor of some viruses, including the novel SARS-CoV-2. In spite of these observations, the association of HSPA5 within the plasma membrane is still unclear. To gain information about this process, we studied the interaction of HSPA5 with liposomes made of different phospholipids. We found that HSPA5 has a high affinity for negatively charged phospholipids, such as palmitoyl-oleoyl phosphoserine (POPS) and cardiolipin (CL). The N-terminal and C-terminal domains of HSPA5 were independently capable of interacting with negatively charged phospholipids, but to a lesser extent than the full-length protein, suggesting that both domains are required for the maximum insertion into membranes. Interestingly, we found that the interaction of HSPA5 with negatively charged liposomes promotes an oligomerization process via intermolecular disulfide bonds in which the N-terminus end of the protein plays a critical role. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s12192-020-01134-9) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-7385938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Netherlands |
record_format | MEDLINE/PubMed |
spelling | pubmed-73859382020-07-28 Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain Dores-Silva, Paulo Roberto Cauvi, David M. Coto, Amanda L. S. Kiraly, Vanessa T. R. Borges, Júlio C. De Maio, Antonio Cell Stress Chaperones Original Paper Heat shock proteins (HSPs) are ubiquitous polypeptides expressed in all living organisms that participate in several basic cellular processes, including protein folding, from which their denomination as molecular chaperones originated. There are several HSPs, including HSPA5, also known as 78-kDa glucose-regulated protein (GRP78) or binding immunoglobulin protein (BIP) that is an ER resident involved in the folding of polypeptides during their translocation into this compartment prior to the transition to the Golgi network. HSPA5 is detected on the surface of cells or secreted into the extracellular environment. Surface HSPA5 has been proposed to have various roles, such as receptor-mediated signal transduction, a co-receptor for soluble ligands, as well as a participant in tumor survival, proliferation, and resistance. Recently, surface HSPA5 has been reported to be a potential receptor of some viruses, including the novel SARS-CoV-2. In spite of these observations, the association of HSPA5 within the plasma membrane is still unclear. To gain information about this process, we studied the interaction of HSPA5 with liposomes made of different phospholipids. We found that HSPA5 has a high affinity for negatively charged phospholipids, such as palmitoyl-oleoyl phosphoserine (POPS) and cardiolipin (CL). The N-terminal and C-terminal domains of HSPA5 were independently capable of interacting with negatively charged phospholipids, but to a lesser extent than the full-length protein, suggesting that both domains are required for the maximum insertion into membranes. Interestingly, we found that the interaction of HSPA5 with negatively charged liposomes promotes an oligomerization process via intermolecular disulfide bonds in which the N-terminus end of the protein plays a critical role. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s12192-020-01134-9) contains supplementary material, which is available to authorized users. Springer Netherlands 2020-07-28 2020-11 /pmc/articles/PMC7385938/ /pubmed/32725381 http://dx.doi.org/10.1007/s12192-020-01134-9 Text en © Cell Stress Society International 2020 |
spellingShingle | Original Paper Dores-Silva, Paulo Roberto Cauvi, David M. Coto, Amanda L. S. Kiraly, Vanessa T. R. Borges, Júlio C. De Maio, Antonio Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain |
title | Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain |
title_full | Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain |
title_fullStr | Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain |
title_full_unstemmed | Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain |
title_short | Interaction of HSPA5 (Grp78, BIP) with negatively charged phospholipid membranes via oligomerization involving the N-terminal end domain |
title_sort | interaction of hspa5 (grp78, bip) with negatively charged phospholipid membranes via oligomerization involving the n-terminal end domain |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385938/ https://www.ncbi.nlm.nih.gov/pubmed/32725381 http://dx.doi.org/10.1007/s12192-020-01134-9 |
work_keys_str_mv | AT doressilvapauloroberto interactionofhspa5grp78bipwithnegativelychargedphospholipidmembranesviaoligomerizationinvolvingthenterminalenddomain AT cauvidavidm interactionofhspa5grp78bipwithnegativelychargedphospholipidmembranesviaoligomerizationinvolvingthenterminalenddomain AT cotoamandals interactionofhspa5grp78bipwithnegativelychargedphospholipidmembranesviaoligomerizationinvolvingthenterminalenddomain AT kiralyvanessatr interactionofhspa5grp78bipwithnegativelychargedphospholipidmembranesviaoligomerizationinvolvingthenterminalenddomain AT borgesjulioc interactionofhspa5grp78bipwithnegativelychargedphospholipidmembranesviaoligomerizationinvolvingthenterminalenddomain AT demaioantonio interactionofhspa5grp78bipwithnegativelychargedphospholipidmembranesviaoligomerizationinvolvingthenterminalenddomain |