Cargando…
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
BACKGROUND: Multiplex immunohistochemistry (mIHC) permits the labeling of six or more distinct cell types within a single histologic tissue section. The classification of each cell type requires detection of uniquely colored chromogens localized to cells expressing biomarkers of interest. The most c...
Autores principales: | Fassler, Danielle J., Abousamra, Shahira, Gupta, Rajarsi, Chen, Chao, Zhao, Maozheng, Paredes, David, Batool, Syeda Areeha, Knudsen, Beatrice S., Escobar-Hoyos, Luisa, Shroyer, Kenneth R., Samaras, Dimitris, Kurc, Tahsin, Saltz, Joel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7385962/ https://www.ncbi.nlm.nih.gov/pubmed/32723384 http://dx.doi.org/10.1186/s13000-020-01003-0 |
Ejemplares similares
-
Publisher Correction to: Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images
por: Fassler, Danielle J., et al.
Publicado: (2020) -
Deep Learning-Based Mapping of Tumor Infiltrating Lymphocytes in Whole Slide Images of 23 Types of Cancer
por: Abousamra, Shahira, et al.
Publicado: (2022) -
Brightfield multiplex immunohistochemistry with multispectral imaging
por: Morrison, Larry E., et al.
Publicado: (2020) -
Dataset of segmented nuclei in hematoxylin and eosin stained histopathology images of ten cancer types
por: Hou, Le, et al.
Publicado: (2020) -
Comparison of Different Classifiers with Active Learning to Support Quality Control in Nucleus Segmentation in Pathology Images
por: Wen, Si, et al.
Publicado: (2018)