Cargando…
Prediction of the output factor using machine and deep learning approach in uniform scanning proton therapy
PURPOSE: The purpose of this work is to develop machine and deep learning‐based models to predict output and MU based on measured patient quality assurance (QA) data in uniform scanning proton therapy (USPT). METHODS: This study involves 4,231 patient QA measurements conducted over the last 6 years....
Autores principales: | Grewal, Hardev S., Chacko, Michael S., Ahmad, Salahuddin, Jin, Hosang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386178/ https://www.ncbi.nlm.nih.gov/pubmed/32419245 http://dx.doi.org/10.1002/acm2.12899 |
Ejemplares similares
-
Determination of machine‐specific tolerances using statistical process control analysis of long‐term uniform scanning proton machine QA results
por: Rana, Suresh, et al.
Publicado: (2020) -
Comparability of three output prediction models for a compact passively double‐scattered proton therapy system
por: Ferguson, Sven, et al.
Publicado: (2017) -
Accuracy of proton stopping power estimation of silicone breast implants with single and dual‐energy CT calibration techniques
por: Chacko, Michael S., et al.
Publicado: (2021) -
Impact of beam‐hardening corrections on proton relative stopping power estimates from single‐ and dual‐energy CT
por: Chacko, Michael S., et al.
Publicado: (2022) -
Spot delivery error predictions for intensity modulated proton therapy using robustness analysis with machine learning
por: Newpower, Mark A., et al.
Publicado: (2023)