Cargando…
KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters
Advances in high-throughput sequencing technologies have reduced the cost of genotyping dramatically and led to genomic prediction being widely used in animal and plant breeding, and increasingly in human genetics. Inspired by the efficient computing of linear mixed model and the accurate prediction...
Autores principales: | Yin, Lilin, Zhang, Haohao, Zhou, Xiang, Yuan, Xiaohui, Zhao, Shuhong, Li, Xinyun, Liu, Xiaolei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386246/ https://www.ncbi.nlm.nih.gov/pubmed/32552725 http://dx.doi.org/10.1186/s13059-020-02052-w |
Ejemplares similares
-
Factors Affecting the Accuracy of Genomic Selection for Agricultural Economic Traits in Maize, Cattle, and Pig Populations
por: Zhang, Haohao, et al.
Publicado: (2019) -
HIBLUP: an integration of statistical models on the BLUP framework for efficient genetic evaluation using big genomic data
por: Yin, Lilin, et al.
Publicado: (2023) -
rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-accelerated Tool for Genome-wide Association Study
por: Yin, Lilin, et al.
Publicado: (2021) -
Genome-Wide Association Study Reveals Candidate Genes for Growth Relevant Traits in Pigs
por: Tang, Zhenshuang, et al.
Publicado: (2019) -
A gene prioritization method based on a swine multi-omics knowledgebase and a deep learning model
por: Fu, Yuhua, et al.
Publicado: (2020)