Cargando…
Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection
BACKGROUND: SARS-CoV2, the agent responsible for the current pandemic, is also causing respiratory distress syndrome (RDS), hyperinflammation and high mortality. It is critical to dissect the pathogenetic mechanisms in order to reach a targeted therapeutic approach. METHODS: In the present investiga...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386311/ https://www.ncbi.nlm.nih.gov/pubmed/32735892 http://dx.doi.org/10.1016/j.yexcr.2020.112204 |
_version_ | 1783563927149346816 |
---|---|
author | Nunnari, Giuseppe Sanfilippo, Cristina Castrogiovanni, Paola Imbesi, Rosa Li Volti, Giovanni Barbagallo, Ignazio Musumeci, Giuseppe Di Rosa, Michelino |
author_facet | Nunnari, Giuseppe Sanfilippo, Cristina Castrogiovanni, Paola Imbesi, Rosa Li Volti, Giovanni Barbagallo, Ignazio Musumeci, Giuseppe Di Rosa, Michelino |
author_sort | Nunnari, Giuseppe |
collection | PubMed |
description | BACKGROUND: SARS-CoV2, the agent responsible for the current pandemic, is also causing respiratory distress syndrome (RDS), hyperinflammation and high mortality. It is critical to dissect the pathogenetic mechanisms in order to reach a targeted therapeutic approach. METHODS: In the present investigation, we evaluated the effects of SARS-CoV(2) on human bronchial epithelial cells (HBEC). We used RNA-seq datasets available online for identifying SARS-CoV(2) potential genes target on human bronchial epithelial cells. RNA expression levels and potential cellular gene pathways have been analyzed. In order to identify possible common strategies among the main pandemic viruses, such as SARS-CoV(2), SARS-CoV1, MERS-CoV, and H1N1, we carried out a hypergeometric test of the main genes transcribed in the cells of the respiratory tract exposed to these viruses. RESULTS: The analysis showed that two mechanisms are highly regulated in HBEC: the innate immunity recruitment and the disassembly of cilia and cytoskeletal structure. The granulocyte colony-stimulating factor (CSF3) and dynein heavy chain 7, axonemal (DNAH7) represented respectively the most upregulated and downregulated genes belonging to the two mechanisms highlighted above. Furthermore, the carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM7) that codifies for a surface protein is highly specific of SARS-CoV(2) and not for SARS-CoV1, MERS-CoV, and H1N1, suggesting a potential role in viral entry. In order to identify potential new drugs, using a machine learning approach, we highlighted Flunisolide, Thalidomide, Lenalidomide, Desoximetasone, xylazine, and salmeterol as potential drugs against SARS-CoV(2) infection. CONCLUSIONS: Overall, lung involvement and RDS could be generated by the activation and down regulation of diverse gene pathway involving respiratory cilia and muscle contraction, apoptotic phenomena, matrix destructuration, collagen deposition, neutrophil and macrophages recruitment. |
format | Online Article Text |
id | pubmed-7386311 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73863112020-07-29 Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection Nunnari, Giuseppe Sanfilippo, Cristina Castrogiovanni, Paola Imbesi, Rosa Li Volti, Giovanni Barbagallo, Ignazio Musumeci, Giuseppe Di Rosa, Michelino Exp Cell Res Article BACKGROUND: SARS-CoV2, the agent responsible for the current pandemic, is also causing respiratory distress syndrome (RDS), hyperinflammation and high mortality. It is critical to dissect the pathogenetic mechanisms in order to reach a targeted therapeutic approach. METHODS: In the present investigation, we evaluated the effects of SARS-CoV(2) on human bronchial epithelial cells (HBEC). We used RNA-seq datasets available online for identifying SARS-CoV(2) potential genes target on human bronchial epithelial cells. RNA expression levels and potential cellular gene pathways have been analyzed. In order to identify possible common strategies among the main pandemic viruses, such as SARS-CoV(2), SARS-CoV1, MERS-CoV, and H1N1, we carried out a hypergeometric test of the main genes transcribed in the cells of the respiratory tract exposed to these viruses. RESULTS: The analysis showed that two mechanisms are highly regulated in HBEC: the innate immunity recruitment and the disassembly of cilia and cytoskeletal structure. The granulocyte colony-stimulating factor (CSF3) and dynein heavy chain 7, axonemal (DNAH7) represented respectively the most upregulated and downregulated genes belonging to the two mechanisms highlighted above. Furthermore, the carcinoembryonic antigen-related cell adhesion molecule 7 (CEACAM7) that codifies for a surface protein is highly specific of SARS-CoV(2) and not for SARS-CoV1, MERS-CoV, and H1N1, suggesting a potential role in viral entry. In order to identify potential new drugs, using a machine learning approach, we highlighted Flunisolide, Thalidomide, Lenalidomide, Desoximetasone, xylazine, and salmeterol as potential drugs against SARS-CoV(2) infection. CONCLUSIONS: Overall, lung involvement and RDS could be generated by the activation and down regulation of diverse gene pathway involving respiratory cilia and muscle contraction, apoptotic phenomena, matrix destructuration, collagen deposition, neutrophil and macrophages recruitment. Elsevier Inc. 2020-10-15 2020-07-28 /pmc/articles/PMC7386311/ /pubmed/32735892 http://dx.doi.org/10.1016/j.yexcr.2020.112204 Text en © 2020 Elsevier Inc. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Nunnari, Giuseppe Sanfilippo, Cristina Castrogiovanni, Paola Imbesi, Rosa Li Volti, Giovanni Barbagallo, Ignazio Musumeci, Giuseppe Di Rosa, Michelino Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection |
title | Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection |
title_full | Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection |
title_fullStr | Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection |
title_full_unstemmed | Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection |
title_short | Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection |
title_sort | network perturbation analysis in human bronchial epithelial cells following sars-cov2 infection |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386311/ https://www.ncbi.nlm.nih.gov/pubmed/32735892 http://dx.doi.org/10.1016/j.yexcr.2020.112204 |
work_keys_str_mv | AT nunnarigiuseppe networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT sanfilippocristina networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT castrogiovannipaola networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT imbesirosa networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT livoltigiovanni networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT barbagalloignazio networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT musumecigiuseppe networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection AT dirosamichelino networkperturbationanalysisinhumanbronchialepithelialcellsfollowingsarscov2infection |