Cargando…
LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue
Type 2 diabetes (T2D) and cardiovascular disease (CVD) share many risk factors such as obesity, unhealthy lifestyle, and metabolic syndrome, whose accumulation over years leads to disease onset. However, while lowering plasma low-density lipoprotein cholesterol (LDLC) is cardio-protective, novel evi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Editorial Department of Journal of Biomedical Research
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386410/ https://www.ncbi.nlm.nih.gov/pubmed/32701068 http://dx.doi.org/10.7555/JBR.34.20190124 |
_version_ | 1783563946995744768 |
---|---|
author | Faraj, May |
author_facet | Faraj, May |
author_sort | Faraj, May |
collection | PubMed |
description | Type 2 diabetes (T2D) and cardiovascular disease (CVD) share many risk factors such as obesity, unhealthy lifestyle, and metabolic syndrome, whose accumulation over years leads to disease onset. However, while lowering plasma low-density lipoprotein cholesterol (LDLC) is cardio-protective, novel evidence have recognised a role for common LDLC-lowering variants (e.g. in HMGCR, PCSK9, and LDLR) and widely used hypocholesterolemic drugs that mimic the effects of some of these variants (statins) in higher risk for T2D. As these conditions decrease plasma LDLC by increasing tissue-uptake of LDL, a role for LDL receptor (LDLR) pathway was proposed. While underlying mechanisms remain to be fully elucidated, work from our lab reported that native LDL directly provoke the dysfunction of human white adipose tissue (WAT) and the activation of WAT NLRP3 (Nucleotide-binding domain and Leucine-rich repeat Receptor, containing a Pyrin domain 3) inflammasome, which play a major role in the etiology of T2D. However, while elevated plasma numbers of apolipoprotein B (apoB)-containing lipoproteins (measured as apoB, mostly as LDL) is associated with WAT dysfunction and related risk factors for T2D in our cohort, this relation was strengthened in regression analysis by lower plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). This supports a central role for upregulated pathway of LDLR and/or other receptors regulated by PCSK9 such as cluster of differentiation 36 (CD36) in LDL-induced anomalies. Targeting receptor-mediated uptake of LDL into WAT may reduce WAT inflammation, WAT dysfunction, and related risk for T2D without increasing the risk for CVD. |
format | Online Article Text |
id | pubmed-7386410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Editorial Department of Journal of Biomedical Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-73864102020-08-13 LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue Faraj, May J Biomed Res Review Article Type 2 diabetes (T2D) and cardiovascular disease (CVD) share many risk factors such as obesity, unhealthy lifestyle, and metabolic syndrome, whose accumulation over years leads to disease onset. However, while lowering plasma low-density lipoprotein cholesterol (LDLC) is cardio-protective, novel evidence have recognised a role for common LDLC-lowering variants (e.g. in HMGCR, PCSK9, and LDLR) and widely used hypocholesterolemic drugs that mimic the effects of some of these variants (statins) in higher risk for T2D. As these conditions decrease plasma LDLC by increasing tissue-uptake of LDL, a role for LDL receptor (LDLR) pathway was proposed. While underlying mechanisms remain to be fully elucidated, work from our lab reported that native LDL directly provoke the dysfunction of human white adipose tissue (WAT) and the activation of WAT NLRP3 (Nucleotide-binding domain and Leucine-rich repeat Receptor, containing a Pyrin domain 3) inflammasome, which play a major role in the etiology of T2D. However, while elevated plasma numbers of apolipoprotein B (apoB)-containing lipoproteins (measured as apoB, mostly as LDL) is associated with WAT dysfunction and related risk factors for T2D in our cohort, this relation was strengthened in regression analysis by lower plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). This supports a central role for upregulated pathway of LDLR and/or other receptors regulated by PCSK9 such as cluster of differentiation 36 (CD36) in LDL-induced anomalies. Targeting receptor-mediated uptake of LDL into WAT may reduce WAT inflammation, WAT dysfunction, and related risk for T2D without increasing the risk for CVD. Editorial Department of Journal of Biomedical Research 2020-07 /pmc/articles/PMC7386410/ /pubmed/32701068 http://dx.doi.org/10.7555/JBR.34.20190124 Text en Copyright and License information: Journal of Biomedical Research, CAS Springer-Verlag Berlin Heidelberg 2020 http://creativecommons.org/licenses/by-nc-sa/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ |
spellingShingle | Review Article Faraj, May LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
title | LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
title_full | LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
title_fullStr | LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
title_full_unstemmed | LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
title_short | LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
title_sort | ldl, ldl receptors, and pcsk9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386410/ https://www.ncbi.nlm.nih.gov/pubmed/32701068 http://dx.doi.org/10.7555/JBR.34.20190124 |
work_keys_str_mv | AT farajmay ldlldlreceptorsandpcsk9asmodulatorsoftheriskfortype2diabetesafocusonwhiteadiposetissue |