Cargando…
Knot selection in sparse Gaussian processes with a variational objective function
Sparse, knot‐based Gaussian processes have enjoyed considerable success as scalable approximations of full Gaussian processes. Certain sparse models can be derived through specific variational approximations to the true posterior, and knots can be selected to minimize the Kullback‐Leibler divergence...
Autores principales: | Garton, Nathaniel, Niemi, Jarad, Carriquiry, Alicia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7386924/ https://www.ncbi.nlm.nih.gov/pubmed/32742538 http://dx.doi.org/10.1002/sam.11459 |
Ejemplares similares
-
Multivariate temporal modeling of crime with dynamic linear models
por: Garton, Nathaniel, et al.
Publicado: (2019) -
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023) -
Variational Bayesian Pansharpening with Super-Gaussian Sparse Image Priors
por: Pérez-Bueno, Fernando, et al.
Publicado: (2020) -
Modeling energy balance while correcting for measurement error via free knot splines
por: Ries, Daniel, et al.
Publicado: (2018) -
Variational Sparse Bayesian Learning for Estimation of Gaussian Mixture Distributed Wireless Channels
por: Kong, Lingjin, et al.
Publicado: (2021)