Cargando…
Adaptation, production, and biotechnological potential of cold-adapted proteases from psychrophiles and psychrotrophs: recent overview
BACKGROUND: Proteases or peptidases are an imperative class of hydrolytic enzymes capable of hydrolyzing large proteins into smaller peptides. The cold-adapted proteases show higher catalytic capacity in low temperatures as well as stability in alkaline conditions and appear as strong contenders for...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387391/ https://www.ncbi.nlm.nih.gov/pubmed/32725297 http://dx.doi.org/10.1186/s43141-020-00053-7 |
Sumario: | BACKGROUND: Proteases or peptidases are an imperative class of hydrolytic enzymes capable of hydrolyzing large proteins into smaller peptides. The cold-adapted proteases show higher catalytic capacity in low temperatures as well as stability in alkaline conditions and appear as strong contenders for various applications in special industries. MAIN BODY: In the past few decades, the interest in cold-adapted microorganisms producing cold-adapted proteases has increased at an exciting rate, and many of them have emerged as important biotechnological and industrial candidates. Industrial proteases are largely supplied from various types of microorganisms than plant or animal sources. Among diverse microbial sources, psychrophiles and psychrotrophs inhabiting permanently or partially cold environments have appeared as rich sources of cold-adapted proteases. SHORT CONCLUSION: The present review focuses on recent sources of cold-adapted protease producers along with the molecular adaptation of psychrotrophs and psychrophiles. The recent knowledge on production, kinetic properties, purification, and substrate specificity of cold-adapted proteases has been summarized. Recent advances in cold-adapted protease gene cloning and structural studies are also described. Moreover, the prospective applications of cold-adapted proteases are discussed which can help in evaluating their industrial potential. |
---|