Cargando…
Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data
Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institu...
Autores principales: | Sheller, Micah J., Edwards, Brandon, Reina, G. Anthony, Martin, Jason, Pati, Sarthak, Kotrotsou, Aikaterini, Milchenko, Mikhail, Xu, Weilin, Marcus, Daniel, Colen, Rivka R., Bakas, Spyridon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387485/ https://www.ncbi.nlm.nih.gov/pubmed/32724046 http://dx.doi.org/10.1038/s41598-020-69250-1 |
Ejemplares similares
-
OpenFL: the open federated learning library
por: Foley, Patrick, et al.
Publicado: (2022) -
Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training()
por: Thakur, Siddhesh, et al.
Publicado: (2020) -
Diffusion-weighted MR imaging histogram analysis in HIV positive and negative patients with primary central nervous system lymphoma as a predictor of outcome and tumor proliferation
por: Khan, Bilal, et al.
Publicado: (2020) -
Whole Tumor Histogram Analysis Using DW MRI in Primary Central Nervous System Lymphoma Correlates with Tumor Biomarkers and Outcome
por: Chong, Insun, et al.
Publicado: (2019) -
The future of digital health with federated learning
por: Rieke, Nicola, et al.
Publicado: (2020)