Cargando…
Author Correction: PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
Autores principales: | Huang, Shih-Cheng, Kothari, Tanay, Banerjee, Imon, Chute, Chris, Ball, Robyn L., Borus, Norah, Huang, Andrew, Patel, Bhavik N., Rajpurkar, Pranav, Irvin, Jeremy, Dunnmon, Jared, Bledsoe, Joseph, Shpanskaya, Katie, Dhaliwal, Abhay, Zamanian, Roham, Ng, Andrew Y., Lungren, Matthew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387525/ https://www.ncbi.nlm.nih.gov/pubmed/32793812 http://dx.doi.org/10.1038/s41746-020-00310-6 |
Ejemplares similares
-
PENet—a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
AppendiXNet: Deep Learning for Diagnosis of Appendicitis from A Small Dataset of CT Exams Using Video Pretraining
por: Rajpurkar, Pranav, et al.
Publicado: (2020) -
Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection
por: Huang, Shih-Cheng, et al.
Publicado: (2020) -
Development and Performance of the Pulmonary Embolism Result Forecast Model (PERFORM) for Computed Tomography Clinical Decision Support
por: Banerjee, Imon, et al.
Publicado: (2019) -
Deep Learning–Assisted Diagnosis of Cerebral Aneurysms Using the HeadXNet Model
por: Park, Allison, et al.
Publicado: (2019)