Cargando…
Synthesis of nickel nanoparticles by a green and convenient method as a magnetic mirror with antibacterial activities
In this work, a simple protocol was described for the synthesis of nickel magnetic mirror nanoparticles (NMMNPs) including antibacterial activities. The identification of NMNPs was carried out by field-emission scanning electron microscopy (FESEM) images, energy-dispersive X-ray (EDX) analysis, X-ra...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387540/ https://www.ncbi.nlm.nih.gov/pubmed/32724123 http://dx.doi.org/10.1038/s41598-020-69679-4 |
Sumario: | In this work, a simple protocol was described for the synthesis of nickel magnetic mirror nanoparticles (NMMNPs) including antibacterial activities. The identification of NMNPs was carried out by field-emission scanning electron microscopy (FESEM) images, energy-dispersive X-ray (EDX) analysis, X-ray diffraction (XRD) pattern, transmission electron microscopy (TEM) images and vibrating sample magnetometer (VSM) curve. The antibacterial activities are investigated against S. aureus and E. coli as the Gram-positive and Gram-negative bacteria, respectively. The UV–Vis absorption was also studied in the present of NMMNPs at different time intervals that disclosed decreasing of the bacterial concentration. More than 80% of the bacteria were disappeared after treating in the presence of NMMNPs for 18 h. The Ni-NPs revealed an excellent mirror attribute with a well-controlled transmission (7%). A better light-reflectivity over conventional glass or a mercury mirror proved their utility for domestic uses in comparison with conventional mirrors as rather toxic materials like mercury. Owing to its magnetic properties, this kind of mirror can be easily made onto glass by using an external magnet. An ordered crystalline structure, admissible magnetic properties, substantial antibacterial activities, tunable mirror properties, mild reaction conditions, and overall, the facile synthesis are the specific features of the present protocol for the possible uses of NMMNPs in diverse applications. |
---|