Cargando…
Chemical structure and genetic organization of the E. coli O6:K15 capsular polysaccharide
Capsular polysaccharides are important virulence factors in pathogenic bacteria. Characterizing the structural components and biosynthetic pathways for these polysaccharides is key to our ability to design vaccines and other preventative therapies that target encapsulated pathogens. Many gram-negati...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387560/ https://www.ncbi.nlm.nih.gov/pubmed/32724125 http://dx.doi.org/10.1038/s41598-020-69476-z |
Sumario: | Capsular polysaccharides are important virulence factors in pathogenic bacteria. Characterizing the structural components and biosynthetic pathways for these polysaccharides is key to our ability to design vaccines and other preventative therapies that target encapsulated pathogens. Many gram-negative pathogens such as Neisseria meningitidis and Escherichia coli express acidic capsules. The E. coli K15 serotype has been identified as both an enterotoxigenic and uropathogenic pathogen. Despite its relevance as a disease-causing serotype, the associated capsular polysaccharide remains poorly characterized. We describe in this report the chemical structure of the K15 polysaccharide, based on chemical analysis and nuclear magnetic resonance (NMR) data. The repeating structure of the K15 polysaccharide consists of 4)-α-GlcpNAc-(1 → 5)-α-KDOp-(2 → partially O-acetylated at 3-hydroxyl of GlcNAc. We also report, the organization of the gene cluster responsible for capsule biosynthesis. We identify genes in this cluster that potentially encode an O-acetyltransferase, an N-acetylglucosamine transferase, and a KDO transferase consistent with the structure we report. |
---|