Cargando…
CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology
CRISPR/Cas9 gene editing technology has taken the scientific community by storm since its development in 2012. First discovered in 1987, CRISPR/Cas systems act as an adaptive immune response in archaea and bacteria that defends against invading bacteriophages and plasmids. CRISPR/Cas9 gene editing t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387688/ https://www.ncbi.nlm.nih.gov/pubmed/32793272 http://dx.doi.org/10.3389/fpls.2020.01126 |
_version_ | 1783564176884498432 |
---|---|
author | Dort, Erika N. Tanguay, Philippe Hamelin, Richard C. |
author_facet | Dort, Erika N. Tanguay, Philippe Hamelin, Richard C. |
author_sort | Dort, Erika N. |
collection | PubMed |
description | CRISPR/Cas9 gene editing technology has taken the scientific community by storm since its development in 2012. First discovered in 1987, CRISPR/Cas systems act as an adaptive immune response in archaea and bacteria that defends against invading bacteriophages and plasmids. CRISPR/Cas9 gene editing technology modifies this immune response to function in eukaryotic cells as a highly specific, RNA-guided complex that can edit almost any genetic target. This technology has applications in all biological fields, including plant pathology. However, examples of its use in forest pathology are essentially nonexistent. The aim of this review is to give researchers a deeper understanding of the native CRISPR/Cas systems and how they were adapted into the CRISPR/Cas9 technology used today in plant pathology—this information is crucial for researchers aiming to use this technology in the pathosystems they study. We review the current applications of CRISPR/Cas9 in plant pathology and propose future directions for research in forest pathosystems where this technology is currently underutilized. |
format | Online Article Text |
id | pubmed-7387688 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73876882020-08-12 CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology Dort, Erika N. Tanguay, Philippe Hamelin, Richard C. Front Plant Sci Plant Science CRISPR/Cas9 gene editing technology has taken the scientific community by storm since its development in 2012. First discovered in 1987, CRISPR/Cas systems act as an adaptive immune response in archaea and bacteria that defends against invading bacteriophages and plasmids. CRISPR/Cas9 gene editing technology modifies this immune response to function in eukaryotic cells as a highly specific, RNA-guided complex that can edit almost any genetic target. This technology has applications in all biological fields, including plant pathology. However, examples of its use in forest pathology are essentially nonexistent. The aim of this review is to give researchers a deeper understanding of the native CRISPR/Cas systems and how they were adapted into the CRISPR/Cas9 technology used today in plant pathology—this information is crucial for researchers aiming to use this technology in the pathosystems they study. We review the current applications of CRISPR/Cas9 in plant pathology and propose future directions for research in forest pathosystems where this technology is currently underutilized. Frontiers Media S.A. 2020-07-22 /pmc/articles/PMC7387688/ /pubmed/32793272 http://dx.doi.org/10.3389/fpls.2020.01126 Text en Copyright © 2020 Dort, Tanguay and Hamelin http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Dort, Erika N. Tanguay, Philippe Hamelin, Richard C. CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology |
title | CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology |
title_full | CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology |
title_fullStr | CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology |
title_full_unstemmed | CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology |
title_short | CRISPR/Cas9 Gene Editing: An Unexplored Frontier for Forest Pathology |
title_sort | crispr/cas9 gene editing: an unexplored frontier for forest pathology |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387688/ https://www.ncbi.nlm.nih.gov/pubmed/32793272 http://dx.doi.org/10.3389/fpls.2020.01126 |
work_keys_str_mv | AT dorterikan crisprcas9geneeditinganunexploredfrontierforforestpathology AT tanguayphilippe crisprcas9geneeditinganunexploredfrontierforforestpathology AT hamelinrichardc crisprcas9geneeditinganunexploredfrontierforforestpathology |