Cargando…
Large-Scale Structure-Based Prediction of Stable Peptide Binding to Class I HLAs Using Random Forests
Prediction of stable peptide binding to Class I HLAs is an important component for designing immunotherapies. While the best performing predictors are based on machine learning algorithms trained on peptide-HLA (pHLA) sequences, the use of structure for training predictors deserves further explorati...
Autores principales: | Abella, Jayvee R., Antunes, Dinler A., Clementi, Cecilia, Kavraki, Lydia E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387700/ https://www.ncbi.nlm.nih.gov/pubmed/32793224 http://dx.doi.org/10.3389/fimmu.2020.01583 |
Ejemplares similares
-
APE-Gen: A Fast Method for Generating Ensembles of Bound Peptide-MHC Conformations
por: Abella, Jayvee R., et al.
Publicado: (2019) -
Structural Modeling and Molecular Dynamics of the Immune Checkpoint Molecule HLA-G
por: Arns, Thais, et al.
Publicado: (2020) -
HLA-Arena: A Customizable Environment for the Structural Modeling and Analysis of Peptide-HLA Complexes for Cancer Immunotherapy
por: Antunes, Dinler A., et al.
Publicado: (2020) -
PepSim: T-cell cross-reactivity prediction via comparison of peptide sequence and peptide-HLA structure
por: Hall-Swan, Sarah, et al.
Publicado: (2023) -
Large-Scale Structure-Based Screening of Potential T Cell Cross-Reactivities Involving Peptide-Targets From BCG Vaccine and SARS-CoV-2
por: Tarabini, Renata Fioravanti, et al.
Publicado: (2022)