Cargando…
Application of Machine Learning Models for Tracking Participant Skills in Cognitive Training
A key need in cognitive training interventions is to personalize task difficulty to each user and to adapt this difficulty to continually apply appropriate challenges as users improve their skill to perform the tasks. Here we examine how Bayesian filtering approaches, such as hidden Markov models an...
Autores principales: | Sandeep, Sanjana, Shelton, Christian R., Pahor, Anja, Jaeggi, Susanne M., Seitz, Aaron R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387708/ https://www.ncbi.nlm.nih.gov/pubmed/32793032 http://dx.doi.org/10.3389/fpsyg.2020.01532 |
Ejemplares similares
-
Unicorn, Hare, or Tortoise? Using Machine Learning to Predict Working Memory Training Performance
por: Feng, Yi, et al.
Publicado: (2023) -
Investigating the Role of Individual Differences in Adherence to Cognitive Training
por: Tullo, Domenico, et al.
Publicado: (2023) -
Change-detection training and its effects on visual processing skills
por: Truong, Jennifer, et al.
Publicado: (2022) -
Activity Engagement and Cognitive Performance Amongst Older Adults
por: Weaver, Alexandria N., et al.
Publicado: (2021) -
Using Cognitive Agents to Train Negotiation Skills
por: Stevens, Christopher A., et al.
Publicado: (2018)