Cargando…
A High-Performance Aqueous Zinc-Bromine Static Battery
The highly reversible zinc-bromine redox couple has been successfully applied in the zinc-bromine flow batteries; however, non-electroactive pump/pipe/reservoir parts and ion-selective membranes are essential to suppress the bromine diffusion. This work demonstrates a zinc-bromine static (non-flow)...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387827/ https://www.ncbi.nlm.nih.gov/pubmed/32711343 http://dx.doi.org/10.1016/j.isci.2020.101348 |
Sumario: | The highly reversible zinc-bromine redox couple has been successfully applied in the zinc-bromine flow batteries; however, non-electroactive pump/pipe/reservoir parts and ion-selective membranes are essential to suppress the bromine diffusion. This work demonstrates a zinc-bromine static (non-flow) battery without these auxiliary parts and utilizing glass fiber separator, which overcomes the high self-discharge rate and low energy efficiency while the advantages of the zinc-bromine chemistry are well preserved. It is achieved by a multifunctional additive, tetrapropylammonium bromide (TPABr), which not only mitigates the bromine cross-diffusion by regulating the fluidic bromine to a condensed solid phase but also provides a favorable interface for zinc electrodeposition toward non-dendritic growth. The proposed zinc-bromine static battery demonstrates a high specific energy of 142 Wh kg(−1) with a high energy efficiency up to 94%. By optimizing the porous electrode architecture, the battery shows an ultra-stable cycling life for over 11,000 cycles with controlled self-discharge rate. |
---|