Cargando…
In Vitro Screening for Acetylcholinesterase Inhibition and Antioxidant Activity of Quercus suber Cork and Corkback Extracts
PURPOSE: Acetylcholinesterase (AChE) inhibitors are used to treat Alzheimer's patients because they enhance cholinergic neurotransmission. It is urgent to find new and efficient inhibitors from natural sources, highly bioavailable with low or no toxicity. The plant kingdom is extremely rich in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7387968/ https://www.ncbi.nlm.nih.gov/pubmed/32765630 http://dx.doi.org/10.1155/2020/3825629 |
Sumario: | PURPOSE: Acetylcholinesterase (AChE) inhibitors are used to treat Alzheimer's patients because they enhance cholinergic neurotransmission. It is urgent to find new and efficient inhibitors from natural sources, highly bioavailable with low or no toxicity. The plant kingdom is extremely rich in a variety of compounds that are potent AChE inhibitors: flavonoids and other phenolic compounds have been recognized as promising Alzheimer's treatment agents. In this study, in vitro acetylcholinesterase inhibition, antioxidant activities, and total flavonoid and phenolic contents of ethanol-water extracts from Quercus suber cork and corkback were evaluated. METHODS: The acetylcholinesterase activity was determined by a colorimetric assay based on Ellman's methodology. The Folin–Ciocalteu colorimetric method was used for total phenolic content determination and the aluminium chloride method for the determination of total flavonoid content. Antioxidant activity assays were performed using the DPPH and FRAP assays. RESULTS: The acetylcholinesterase inhibitory activity from Q. suber cork and corkback ethanol-water extracts was as follows: 62% inhibition with corkback extracts over 0.5 mg/mL and around 49% inhibition in cork extracts over 1.0 mg/mL extracts' concentration. Regarding the DPPH radical scavenging activity, the concentrations of cork and corkback ethanol-water extracts required for 50% DPPH inhibition (IC50) were 3.2 μg/mL and 4.0–5.2 μg/mL. Corkback extracts are less effective than Trolox standard (3.2 μg/mL) but cork extracts showed the same free radical scavenging activity compared to Trolox. Cork and corkback extracts have antioxidant power of 750.9–775.4 mg TEAC/g extract and 1051.2–2052.4 mg TEAC/g extract, respectively, which are significantly higher than the ones obtained with Trolox: 19.6–21.0 mg TEAC/g extract (cork assays) and 57.4–66.3 mg TEAC/g extract (corkback assays). The amounts of total phenolic (TPC) and flavonoid (TFC) compounds were 8.7–32.3 mg GAE/g and 4.8–10.7 mg CE/g dry mass for cork and 5.4–5.7 mg GAE/g and 42.5 mg CE/g dry mass for corkback extracts, respectively, using catechin (CE) and GAE (gallic acid) as standards. CONCLUSION: These findings demonstrate the remarkable potential of these extracts as valuable source of antioxidants with interesting acetylcholinesterase inhibitory activity. |
---|