Cargando…
A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae
The Araneae order is considered one of the most successful groups among venomous animals in the world. An important factor for this success is the production of venoms, a refined biological fluid rich in proteins, short peptides and cysteine-rich peptides (CRPs). These toxins may present pharmacolog...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388414/ https://www.ncbi.nlm.nih.gov/pubmed/32774304 http://dx.doi.org/10.3389/fphar.2020.01075 |
_version_ | 1783564304485711872 |
---|---|
author | Câmara, Guilherme A. Nishiyama-Jr, Milton Y. Kitano, Eduardo S. Oliveira, Ursula C. da Silva, Pedro I. Junqueira-de-Azevedo, Inácio L. Tashima, Alexandre K. |
author_facet | Câmara, Guilherme A. Nishiyama-Jr, Milton Y. Kitano, Eduardo S. Oliveira, Ursula C. da Silva, Pedro I. Junqueira-de-Azevedo, Inácio L. Tashima, Alexandre K. |
author_sort | Câmara, Guilherme A. |
collection | PubMed |
description | The Araneae order is considered one of the most successful groups among venomous animals in the world. An important factor for this success is the production of venoms, a refined biological fluid rich in proteins, short peptides and cysteine-rich peptides (CRPs). These toxins may present pharmacologically relevant biological actions, as antimicrobial, antiviral and anticancer activities, for instance. Therefore, there is an increasing interest in the exploration of venom toxins for therapeutic reasons, such as drug development. However, the process of peptide sequencing and mainly the evaluation of potential biological activities of these peptides are laborious, considering the low yield of venom extraction and the high variability of toxins present in spider venoms. Here we show a robust methodology for identification, sequencing, and initial screening of potential bioactive peptides found in the venom of Acanthoscurria rondoniae. This methodology consists in a multiomics approach involving proteomics, peptidomics and transcriptomics analyses allied to in silico predictions of antibacterial, antifungal, antiviral, and anticancer activities. Through the application of this strategy, a total of 92,889 venom gland transcripts were assembled and 84 novel toxins were identified at the protein level, including seven short peptides and 10 fully sequenced CRPs (belonging to seven toxin families). In silico analysis suggests that seven CRPs families may have potential antimicrobial or antiviral activities, while two CRPs and four short peptides are potentially anticancer. Taken together, our results demonstrate an effective multiomics strategy for the discovery of new toxins and in silico screening of potential bioactivities. This strategy may be useful in toxin discovery, as well as in the screening of possible activities for the vast diversity of molecules produced by venomous animals. |
format | Online Article Text |
id | pubmed-7388414 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73884142020-08-07 A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae Câmara, Guilherme A. Nishiyama-Jr, Milton Y. Kitano, Eduardo S. Oliveira, Ursula C. da Silva, Pedro I. Junqueira-de-Azevedo, Inácio L. Tashima, Alexandre K. Front Pharmacol Pharmacology The Araneae order is considered one of the most successful groups among venomous animals in the world. An important factor for this success is the production of venoms, a refined biological fluid rich in proteins, short peptides and cysteine-rich peptides (CRPs). These toxins may present pharmacologically relevant biological actions, as antimicrobial, antiviral and anticancer activities, for instance. Therefore, there is an increasing interest in the exploration of venom toxins for therapeutic reasons, such as drug development. However, the process of peptide sequencing and mainly the evaluation of potential biological activities of these peptides are laborious, considering the low yield of venom extraction and the high variability of toxins present in spider venoms. Here we show a robust methodology for identification, sequencing, and initial screening of potential bioactive peptides found in the venom of Acanthoscurria rondoniae. This methodology consists in a multiomics approach involving proteomics, peptidomics and transcriptomics analyses allied to in silico predictions of antibacterial, antifungal, antiviral, and anticancer activities. Through the application of this strategy, a total of 92,889 venom gland transcripts were assembled and 84 novel toxins were identified at the protein level, including seven short peptides and 10 fully sequenced CRPs (belonging to seven toxin families). In silico analysis suggests that seven CRPs families may have potential antimicrobial or antiviral activities, while two CRPs and four short peptides are potentially anticancer. Taken together, our results demonstrate an effective multiomics strategy for the discovery of new toxins and in silico screening of potential bioactivities. This strategy may be useful in toxin discovery, as well as in the screening of possible activities for the vast diversity of molecules produced by venomous animals. Frontiers Media S.A. 2020-07-17 /pmc/articles/PMC7388414/ /pubmed/32774304 http://dx.doi.org/10.3389/fphar.2020.01075 Text en Copyright © 2020 Câmara, Nishiyama-Jr, Kitano, Oliveira, Silva, Junqueira-de-Azevedo and Tashima http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Câmara, Guilherme A. Nishiyama-Jr, Milton Y. Kitano, Eduardo S. Oliveira, Ursula C. da Silva, Pedro I. Junqueira-de-Azevedo, Inácio L. Tashima, Alexandre K. A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae |
title | A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae
|
title_full | A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae
|
title_fullStr | A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae
|
title_full_unstemmed | A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae
|
title_short | A Multiomics Approach Unravels New Toxins With Possible In Silico Antimicrobial, Antiviral, and Antitumoral Activities in the Venom of Acanthoscurria rondoniae
|
title_sort | multiomics approach unravels new toxins with possible in silico antimicrobial, antiviral, and antitumoral activities in the venom of acanthoscurria rondoniae |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388414/ https://www.ncbi.nlm.nih.gov/pubmed/32774304 http://dx.doi.org/10.3389/fphar.2020.01075 |
work_keys_str_mv | AT camaraguilhermea amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT nishiyamajrmiltony amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT kitanoeduardos amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT oliveiraursulac amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT dasilvapedroi amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT junqueiradeazevedoinaciol amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT tashimaalexandrek amultiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT camaraguilhermea multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT nishiyamajrmiltony multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT kitanoeduardos multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT oliveiraursulac multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT dasilvapedroi multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT junqueiradeazevedoinaciol multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae AT tashimaalexandrek multiomicsapproachunravelsnewtoxinswithpossibleinsilicoantimicrobialantiviralandantitumoralactivitiesinthevenomofacanthoscurriarondoniae |