Cargando…

miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression

Expression levels of miR-223-3p and NLRP3 in high glucose and high fat (HGHF)-induced diabetic mice, and the mechanism on the injury of mouse cardiac microvascular endothelial cells (MCMECs) were investigated. Four-week C57BL/6J laboratory mice were selected and randomized into a control group and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Deng, Bo, Hu, Ying, Sheng, Xia, Zeng, Huijun, Huo, Yanan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388564/
https://www.ncbi.nlm.nih.gov/pubmed/32765674
http://dx.doi.org/10.3892/etm.2020.8864
_version_ 1783564334135246848
author Deng, Bo
Hu, Ying
Sheng, Xia
Zeng, Huijun
Huo, Yanan
author_facet Deng, Bo
Hu, Ying
Sheng, Xia
Zeng, Huijun
Huo, Yanan
author_sort Deng, Bo
collection PubMed
description Expression levels of miR-223-3p and NLRP3 in high glucose and high fat (HGHF)-induced diabetic mice, and the mechanism on the injury of mouse cardiac microvascular endothelial cells (MCMECs) were investigated. Four-week C57BL/6J laboratory mice were selected and randomized into a control group and a model group (n=10 each). Mice in the model group were fed with HGHF diet to establish a mouse model of diabetes. Further MCMECs were purchased to construct carriers through transient transfection, and were separated into a normal group (cultured in the normal environment), a model group (not transfected), a blank carrier group (transfected with miR-NC), a miR-223-3p-mimics group, and a miR-223-3p-inhibitor group. RT-qPCR was used to detect the expression levels of miR-223-3p and NLRP3, and western blot analysis to detect the expression levels of NLRP3, apoptosis-related proteins Bax and caspase-3, and anti-apoptotic protein Bcl-2. Flow cytometry was used to observe apoptosis and TargetScan to predict the target relationship between miR-223-3p and NLRP3. Dual-luciferase reporter gene assay was used to detect the relationship between miR-223-3p and NLRP3. Compared with those in the control group, the mice in the model group had significantly lower expression of miR-223-3p. However, significantly higher mRNA and protein expression levels of NLRP3 were observed (P<0.05). After modeling, miR-223-3p overexpression downregulated the expression levels of NLRP3 mRNA, Bax and NLRP3 protein, as well as inhibited endothelial cell apoptosis (P<0.05), while the inhibition of miR-223-3p expression upregulated the expression levels and promoted apoptosis. In conclusion, miR-223-3p expression is low, however, NLRP3 is highly expressed in the heart tissue of HGHF-induced diabetic mice. miR-223-3p reduces the injury of MCMECs and inhibits endothelial cell apoptosis in mice by regulating the expression of NLRP3.
format Online
Article
Text
id pubmed-7388564
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher D.A. Spandidos
record_format MEDLINE/PubMed
spelling pubmed-73885642020-08-05 miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression Deng, Bo Hu, Ying Sheng, Xia Zeng, Huijun Huo, Yanan Exp Ther Med Articles Expression levels of miR-223-3p and NLRP3 in high glucose and high fat (HGHF)-induced diabetic mice, and the mechanism on the injury of mouse cardiac microvascular endothelial cells (MCMECs) were investigated. Four-week C57BL/6J laboratory mice were selected and randomized into a control group and a model group (n=10 each). Mice in the model group were fed with HGHF diet to establish a mouse model of diabetes. Further MCMECs were purchased to construct carriers through transient transfection, and were separated into a normal group (cultured in the normal environment), a model group (not transfected), a blank carrier group (transfected with miR-NC), a miR-223-3p-mimics group, and a miR-223-3p-inhibitor group. RT-qPCR was used to detect the expression levels of miR-223-3p and NLRP3, and western blot analysis to detect the expression levels of NLRP3, apoptosis-related proteins Bax and caspase-3, and anti-apoptotic protein Bcl-2. Flow cytometry was used to observe apoptosis and TargetScan to predict the target relationship between miR-223-3p and NLRP3. Dual-luciferase reporter gene assay was used to detect the relationship between miR-223-3p and NLRP3. Compared with those in the control group, the mice in the model group had significantly lower expression of miR-223-3p. However, significantly higher mRNA and protein expression levels of NLRP3 were observed (P<0.05). After modeling, miR-223-3p overexpression downregulated the expression levels of NLRP3 mRNA, Bax and NLRP3 protein, as well as inhibited endothelial cell apoptosis (P<0.05), while the inhibition of miR-223-3p expression upregulated the expression levels and promoted apoptosis. In conclusion, miR-223-3p expression is low, however, NLRP3 is highly expressed in the heart tissue of HGHF-induced diabetic mice. miR-223-3p reduces the injury of MCMECs and inhibits endothelial cell apoptosis in mice by regulating the expression of NLRP3. D.A. Spandidos 2020-08 2020-06-10 /pmc/articles/PMC7388564/ /pubmed/32765674 http://dx.doi.org/10.3892/etm.2020.8864 Text en Copyright: © Deng et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
spellingShingle Articles
Deng, Bo
Hu, Ying
Sheng, Xia
Zeng, Huijun
Huo, Yanan
miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression
title miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression
title_full miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression
title_fullStr miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression
title_full_unstemmed miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression
title_short miR-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating NLRP3 expression
title_sort mir-223-3p reduces high glucose and high fat-induced endothelial cell injury in diabetic mice by regulating nlrp3 expression
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388564/
https://www.ncbi.nlm.nih.gov/pubmed/32765674
http://dx.doi.org/10.3892/etm.2020.8864
work_keys_str_mv AT dengbo mir2233preduceshighglucoseandhighfatinducedendothelialcellinjuryindiabeticmicebyregulatingnlrp3expression
AT huying mir2233preduceshighglucoseandhighfatinducedendothelialcellinjuryindiabeticmicebyregulatingnlrp3expression
AT shengxia mir2233preduceshighglucoseandhighfatinducedendothelialcellinjuryindiabeticmicebyregulatingnlrp3expression
AT zenghuijun mir2233preduceshighglucoseandhighfatinducedendothelialcellinjuryindiabeticmicebyregulatingnlrp3expression
AT huoyanan mir2233preduceshighglucoseandhighfatinducedendothelialcellinjuryindiabeticmicebyregulatingnlrp3expression