Cargando…
Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters
Tumor drug resistance (TDR) invariably leads to the failure of chemotherapy. In addition, current treatment strategies for TDR are not satisfactory due to limitations in terms of safety and feasibility. The aim of the present study was to determine whether low-intensity low-frequency ultrasound (LIL...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388575/ https://www.ncbi.nlm.nih.gov/pubmed/32705228 http://dx.doi.org/10.3892/or.2020.7671 |
_version_ | 1783564336520757248 |
---|---|
author | Qiu, Fuqiang Chen, Jifan Cao, Jing Diao, Feng Huang, Pintong |
author_facet | Qiu, Fuqiang Chen, Jifan Cao, Jing Diao, Feng Huang, Pintong |
author_sort | Qiu, Fuqiang |
collection | PubMed |
description | Tumor drug resistance (TDR) invariably leads to the failure of chemotherapy. In addition, current treatment strategies for TDR are not satisfactory due to limitations in terms of safety and feasibility. The aim of the present study was to determine whether low-intensity low-frequency ultrasound (LILFU) could improve the effect of chemotherapy and reverse TDR in gemcitabine-resistant ASPC-1 (ASPC-1/GEM) cells. The investigation focused on the association between LILFU effectiveness and the adenosine triphosphate-binding cassette (ABC) transporters and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (NF)-κB signaling pathway. A Cell Counting Kit-8 assay was used to determine the appropriate acoustic intensity, half-maximal inhibitory concentration of gemcitabine (GEM) and the viability of ASPC-1/GEM cells. ASPC-1/GEM cells were divided into control, GEM, LILFU and GEM+LILFU groups. Cell proliferation was evaluated through colony formation assays, whereas cell apoptosis was detected using flow cytometry. Western blotting was used to explore the expression levels of ABC transporters and PI3K/AKT/NF-κB signaling pathway-associated proteins. Xenograft models in mice were established to identify the enhancing effect of GEM+LILFU in vivo. Immunohistochemistry was used to detect the expression levels of Ki-67 in tumor tissues. The acoustic parameter of 0.2 W/cm(2) and a GEM concentration of 6.63 mg/ml were used in subsequent experiments. Following treatment with GEM+LILFU, the cell viability and proliferation ability were decreased, whereas the apoptotic rate was increased compared with the GEM group. The expression levels of ABC transporters, PI3K-P110α and NF-κB were decreased in the GEM+LILFU group. Notably, LILFU increased the effectiveness of GEM in inhibiting tumor growth, and reduced the expression levels of Ki-67 in the xenograft mouse model. LILFU improved the chemosensitivity of ASPC-1/GEM cells via inhibition of cell viability and proliferation, and promoted cell apoptosis in the GEM+LILFU group. In conclusion, LILFU may downregulate the expression levels of ABC transporters by inhibiting the PI3K-p110α/AKT/NF-κB signaling pathway, thereby reversing resistance in pancreatic cancer. |
format | Online Article Text |
id | pubmed-7388575 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-73885752020-08-05 Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters Qiu, Fuqiang Chen, Jifan Cao, Jing Diao, Feng Huang, Pintong Oncol Rep Articles Tumor drug resistance (TDR) invariably leads to the failure of chemotherapy. In addition, current treatment strategies for TDR are not satisfactory due to limitations in terms of safety and feasibility. The aim of the present study was to determine whether low-intensity low-frequency ultrasound (LILFU) could improve the effect of chemotherapy and reverse TDR in gemcitabine-resistant ASPC-1 (ASPC-1/GEM) cells. The investigation focused on the association between LILFU effectiveness and the adenosine triphosphate-binding cassette (ABC) transporters and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (NF)-κB signaling pathway. A Cell Counting Kit-8 assay was used to determine the appropriate acoustic intensity, half-maximal inhibitory concentration of gemcitabine (GEM) and the viability of ASPC-1/GEM cells. ASPC-1/GEM cells were divided into control, GEM, LILFU and GEM+LILFU groups. Cell proliferation was evaluated through colony formation assays, whereas cell apoptosis was detected using flow cytometry. Western blotting was used to explore the expression levels of ABC transporters and PI3K/AKT/NF-κB signaling pathway-associated proteins. Xenograft models in mice were established to identify the enhancing effect of GEM+LILFU in vivo. Immunohistochemistry was used to detect the expression levels of Ki-67 in tumor tissues. The acoustic parameter of 0.2 W/cm(2) and a GEM concentration of 6.63 mg/ml were used in subsequent experiments. Following treatment with GEM+LILFU, the cell viability and proliferation ability were decreased, whereas the apoptotic rate was increased compared with the GEM group. The expression levels of ABC transporters, PI3K-P110α and NF-κB were decreased in the GEM+LILFU group. Notably, LILFU increased the effectiveness of GEM in inhibiting tumor growth, and reduced the expression levels of Ki-67 in the xenograft mouse model. LILFU improved the chemosensitivity of ASPC-1/GEM cells via inhibition of cell viability and proliferation, and promoted cell apoptosis in the GEM+LILFU group. In conclusion, LILFU may downregulate the expression levels of ABC transporters by inhibiting the PI3K-p110α/AKT/NF-κB signaling pathway, thereby reversing resistance in pancreatic cancer. D.A. Spandidos 2020-09 2020-07-07 /pmc/articles/PMC7388575/ /pubmed/32705228 http://dx.doi.org/10.3892/or.2020.7671 Text en Copyright: © Qiu et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Qiu, Fuqiang Chen, Jifan Cao, Jing Diao, Feng Huang, Pintong Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters |
title | Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters |
title_full | Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters |
title_fullStr | Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters |
title_full_unstemmed | Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters |
title_short | Low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant ASPC-1 cells via PI3K/AKT/NF-κB pathway-mediated ABC transporters |
title_sort | low-intensity low-frequency ultrasound enhances the chemosensitivity of gemcitabine-resistant aspc-1 cells via pi3k/akt/nf-κb pathway-mediated abc transporters |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388575/ https://www.ncbi.nlm.nih.gov/pubmed/32705228 http://dx.doi.org/10.3892/or.2020.7671 |
work_keys_str_mv | AT qiufuqiang lowintensitylowfrequencyultrasoundenhancesthechemosensitivityofgemcitabineresistantaspc1cellsviapi3kaktnfkbpathwaymediatedabctransporters AT chenjifan lowintensitylowfrequencyultrasoundenhancesthechemosensitivityofgemcitabineresistantaspc1cellsviapi3kaktnfkbpathwaymediatedabctransporters AT caojing lowintensitylowfrequencyultrasoundenhancesthechemosensitivityofgemcitabineresistantaspc1cellsviapi3kaktnfkbpathwaymediatedabctransporters AT diaofeng lowintensitylowfrequencyultrasoundenhancesthechemosensitivityofgemcitabineresistantaspc1cellsviapi3kaktnfkbpathwaymediatedabctransporters AT huangpintong lowintensitylowfrequencyultrasoundenhancesthechemosensitivityofgemcitabineresistantaspc1cellsviapi3kaktnfkbpathwaymediatedabctransporters |