Cargando…
CT-Based Deep Learning Model for Invasiveness Classification and Micropapillary Pattern Prediction Within Lung Adenocarcinoma
Objective: Identification of tumor invasiveness of pulmonary adenocarcinomas before surgery is one of the most important guides to surgical planning. Additionally, preoperative diagnosis of lung adenocarcinoma with micropapillary patterns is also critical for clinical decision making. We aimed to ev...
Autores principales: | Ding, Hanlin, Xia, Wenjie, Zhang, Lei, Mao, Qixing, Cao, Bowen, Zhao, Yihang, Xu, Lin, Jiang, Feng, Dong, Gaochao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7388896/ https://www.ncbi.nlm.nih.gov/pubmed/32775302 http://dx.doi.org/10.3389/fonc.2020.01186 |
Ejemplares similares
-
Enhanced CT-Based Radiomics to Predict Micropapillary Pattern Within Lung Invasive Adenocarcinoma
por: Xu, Yunyu, et al.
Publicado: (2021) -
Genomic and clinicopathological features of lung adenocarcinomas with micropapillary component
por: Li, Peng, et al.
Publicado: (2022) -
Comprehensive analyses unveil novel genomic and immunological characteristics of micropapillary pattern in lung adenocarcinoma
por: Huo, Yansong, et al.
Publicado: (2022) -
The Prognostic Value of Non-Predominant Micropapillary Pattern in a Large Cohort of Resected Invasive Lung Adenocarcinoma Measuring ≤3 cm
por: Zhang, Hua, et al.
Publicado: (2021) -
Integrated Analysis of Genomic and Immunological Features in Lung Adenocarcinoma With Micropapillary Component
por: Zhang, Shirong, et al.
Publicado: (2021)