Cargando…
Intra-subject approach for gait-event prediction by neural network interpretation of EMG signals
BACKGROUND: Machine learning models were satisfactorily implemented for estimating gait events from surface electromyographic (sEMG) signals during walking. Most of them are based on inter-subject approaches for data preparation. Aim of the study is to propose an intra-subject approach for binary cl...
Autores principales: | Di Nardo, Francesco, Morbidoni, Christian, Mascia, Guido, Verdini, Federica, Fioretti, Sandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7389432/ https://www.ncbi.nlm.nih.gov/pubmed/32723335 http://dx.doi.org/10.1186/s12938-020-00803-1 |
Ejemplares similares
-
Machine Learning for Detection of Muscular Activity from Surface EMG Signals
por: Di Nardo, Francesco, et al.
Publicado: (2022) -
EMG-Based Characterization of Walking Asymmetry in Children with Mild Hemiplegic Cerebral Palsy
por: Di Nardo, Francesco, et al.
Publicado: (2019) -
Impact of Gait Events Identification through Wearable Inertial Sensors on Clinical Gait Analysis of Children with Idiopathic Toe Walking
por: Brasiliano, Paolo, et al.
Publicado: (2023) -
EMG Based Analysis of Gait Symmetry in Healthy Children
por: Daunoraviciene, Kristina, et al.
Publicado: (2021) -
The influence of accuracy constraints on EMG and kinetic variables during
gait initiation
por: Kim, Hyeong-Dong, et al.
Publicado: (2015)