Cargando…

Endothelial protective factors BMP9 and BMP10 inhibit CCL2 release by human vascular endothelial cells

Bone morphogenetic protein 9 (BMP9) and BMP10 are circulating ligands that mediate endothelial cell (EC) protection via complexes of the type I receptor ALK1 and the type II receptors activin type-IIA receptor (ACTR-IIA) and bone morphogenetic type II receptor (BMPR-II). We previously demonstrated t...

Descripción completa

Detalles Bibliográficos
Autores principales: Upton, Paul D., Park, John E. S., De Souza, Patricia M., Davies, Rachel J., Griffiths, Mark J. D., Wort, Stephen J., Morrell, Nicholas W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390625/
https://www.ncbi.nlm.nih.gov/pubmed/32576665
http://dx.doi.org/10.1242/jcs.239715
Descripción
Sumario:Bone morphogenetic protein 9 (BMP9) and BMP10 are circulating ligands that mediate endothelial cell (EC) protection via complexes of the type I receptor ALK1 and the type II receptors activin type-IIA receptor (ACTR-IIA) and bone morphogenetic type II receptor (BMPR-II). We previously demonstrated that BMP9 induces the expression of interleukin-6, interleukin-8 and E-selectin in ECs and might influence their interactions with monocytes and neutrophils. We asked whether BMP9 and BMP10 regulate the expression of chemokine (C-C motif) ligand 2 (CCL2), a key chemokine involved in monocyte–macrophage chemoattraction. Here, we show that BMP9 and BMP10 repress basal CCL2 expression and release from human pulmonary artery ECs and aortic ECs. The repression was dependent on ALK1 and co-dependent on ACTR-IIA and BMPR-II. Assessment of canonical Smad signalling indicated a reliance of this response on Smad4. Of note, Smad1/5 signalling contributed only at BMP9 concentrations similar to those in the circulation. In the context of inflammation, BMP9 did not alter the induction of CCL2 by TNF-α. As CCL2 promotes monocyte/macrophage chemotaxis and endothelial permeability, these data support the concept that BMP9 preserves basal endothelial integrity.