Cargando…
Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe
Checkpoint activation and gene expression modulation represent key determinants of cellular survival in adverse conditions. The former is regulated by cyclin-dependent kinases (CDKs) while the latter can be controlled by mitogen-activated protein kinases (MAPKs). Association between cell-cycle progr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390630/ https://www.ncbi.nlm.nih.gov/pubmed/32554481 http://dx.doi.org/10.1242/bio.053322 |
_version_ | 1783564489687302144 |
---|---|
author | Ghosal, Agamani Sarkar, Priyanka Sundaram, Geetanjali |
author_facet | Ghosal, Agamani Sarkar, Priyanka Sundaram, Geetanjali |
author_sort | Ghosal, Agamani |
collection | PubMed |
description | Checkpoint activation and gene expression modulation represent key determinants of cellular survival in adverse conditions. The former is regulated by cyclin-dependent kinases (CDKs) while the latter can be controlled by mitogen-activated protein kinases (MAPKs). Association between cell-cycle progression and MAPK-dependent gene expression exists in cells growing in optimal environments. While MAPK-mediated regulation of the cell cycle is well characterised, the reciprocal influence of mitotic CDK on stress response is not well studied. We present evidence that CDK activity can regulate the extent of MAPK activation in Schizosaccharomyces pombe cells. We show that increasing or decreasing mitotic CDK (Cdc2) activity in S. pombe cells can affect the activation of stress responsive MAPK (Spc1) even in the absence of stress stimuli. Our results indicate that the strong correlation between Cdc2 activity and Spc1 MAPK-activity in S. pombe is important in regulating mitotic timing. This article has an associated First Person interview with the first author of the paper. |
format | Online Article Text |
id | pubmed-7390630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | The Company of Biologists Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-73906302020-07-30 Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe Ghosal, Agamani Sarkar, Priyanka Sundaram, Geetanjali Biol Open Research Article Checkpoint activation and gene expression modulation represent key determinants of cellular survival in adverse conditions. The former is regulated by cyclin-dependent kinases (CDKs) while the latter can be controlled by mitogen-activated protein kinases (MAPKs). Association between cell-cycle progression and MAPK-dependent gene expression exists in cells growing in optimal environments. While MAPK-mediated regulation of the cell cycle is well characterised, the reciprocal influence of mitotic CDK on stress response is not well studied. We present evidence that CDK activity can regulate the extent of MAPK activation in Schizosaccharomyces pombe cells. We show that increasing or decreasing mitotic CDK (Cdc2) activity in S. pombe cells can affect the activation of stress responsive MAPK (Spc1) even in the absence of stress stimuli. Our results indicate that the strong correlation between Cdc2 activity and Spc1 MAPK-activity in S. pombe is important in regulating mitotic timing. This article has an associated First Person interview with the first author of the paper. The Company of Biologists Ltd 2020-07-21 /pmc/articles/PMC7390630/ /pubmed/32554481 http://dx.doi.org/10.1242/bio.053322 Text en © 2020. Published by The Company of Biologists Ltd http://creativecommons.org/licenses/by/4.0This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. |
spellingShingle | Research Article Ghosal, Agamani Sarkar, Priyanka Sundaram, Geetanjali Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe |
title | Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe |
title_full | Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe |
title_fullStr | Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe |
title_full_unstemmed | Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe |
title_short | Communication between Cyclin-dependent kinase Cdc2 and the Wis1-Spc1 MAPK pathway determines mitotic timing in Schizosaccharomyces pombe |
title_sort | communication between cyclin-dependent kinase cdc2 and the wis1-spc1 mapk pathway determines mitotic timing in schizosaccharomyces pombe |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390630/ https://www.ncbi.nlm.nih.gov/pubmed/32554481 http://dx.doi.org/10.1242/bio.053322 |
work_keys_str_mv | AT ghosalagamani communicationbetweencyclindependentkinasecdc2andthewis1spc1mapkpathwaydeterminesmitotictiminginschizosaccharomycespombe AT sarkarpriyanka communicationbetweencyclindependentkinasecdc2andthewis1spc1mapkpathwaydeterminesmitotictiminginschizosaccharomycespombe AT sundaramgeetanjali communicationbetweencyclindependentkinasecdc2andthewis1spc1mapkpathwaydeterminesmitotictiminginschizosaccharomycespombe |