Cargando…
A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could co...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390963/ https://www.ncbi.nlm.nih.gov/pubmed/32793138 http://dx.doi.org/10.3389/fmicb.2020.01585 |
_version_ | 1783564552142585856 |
---|---|
author | Feng, Xu Liu, Xiaotong Xu, Ruyi Zhao, Ruiliang Feng, Wenqian Liao, Jianglan Han, Wenyuan She, Qunxin |
author_facet | Feng, Xu Liu, Xiaotong Xu, Ruyi Zhao, Ruiliang Feng, Wenqian Liao, Jianglan Han, Wenyuan She, Qunxin |
author_sort | Feng, Xu |
collection | PubMed |
description | Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage. |
format | Online Article Text |
id | pubmed-7390963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73909632020-08-12 A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota Feng, Xu Liu, Xiaotong Xu, Ruyi Zhao, Ruiliang Feng, Wenqian Liao, Jianglan Han, Wenyuan She, Qunxin Front Microbiol Microbiology Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage. Frontiers Media S.A. 2020-07-23 /pmc/articles/PMC7390963/ /pubmed/32793138 http://dx.doi.org/10.3389/fmicb.2020.01585 Text en Copyright © 2020 Feng, Liu, Xu, Zhao, Feng, Liao, Han and She. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Feng, Xu Liu, Xiaotong Xu, Ruyi Zhao, Ruiliang Feng, Wenqian Liao, Jianglan Han, Wenyuan She, Qunxin A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota |
title | A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota |
title_full | A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota |
title_fullStr | A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota |
title_full_unstemmed | A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota |
title_short | A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota |
title_sort | unique b-family dna polymerase facilitating error-prone dna damage tolerance in crenarchaeota |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390963/ https://www.ncbi.nlm.nih.gov/pubmed/32793138 http://dx.doi.org/10.3389/fmicb.2020.01585 |
work_keys_str_mv | AT fengxu auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT liuxiaotong auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT xuruyi auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT zhaoruiliang auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT fengwenqian auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT liaojianglan auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT hanwenyuan auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT shequnxin auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT fengxu uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT liuxiaotong uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT xuruyi uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT zhaoruiliang uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT fengwenqian uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT liaojianglan uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT hanwenyuan uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota AT shequnxin uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota |