Cargando…

A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota

Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could co...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Xu, Liu, Xiaotong, Xu, Ruyi, Zhao, Ruiliang, Feng, Wenqian, Liao, Jianglan, Han, Wenyuan, She, Qunxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390963/
https://www.ncbi.nlm.nih.gov/pubmed/32793138
http://dx.doi.org/10.3389/fmicb.2020.01585
_version_ 1783564552142585856
author Feng, Xu
Liu, Xiaotong
Xu, Ruyi
Zhao, Ruiliang
Feng, Wenqian
Liao, Jianglan
Han, Wenyuan
She, Qunxin
author_facet Feng, Xu
Liu, Xiaotong
Xu, Ruyi
Zhao, Ruiliang
Feng, Wenqian
Liao, Jianglan
Han, Wenyuan
She, Qunxin
author_sort Feng, Xu
collection PubMed
description Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage.
format Online
Article
Text
id pubmed-7390963
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-73909632020-08-12 A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota Feng, Xu Liu, Xiaotong Xu, Ruyi Zhao, Ruiliang Feng, Wenqian Liao, Jianglan Han, Wenyuan She, Qunxin Front Microbiol Microbiology Sulfolobus islandicus codes for four DNA polymerases: three are of the B-family (Dpo1, Dpo2, and Dpo3), and one is of the Y-family (Dpo4). Western analysis revealed that among the four polymerases, only Dpo2 exhibited DNA damage-inducible expression. To investigate how these DNA polymerases could contribute to DNA damage tolerance in S. islandicus, we conducted genetic analysis of their encoding genes in this archaeon. Plasmid-borne gene expression revealed that Dpo2 increases cell survival upon DNA damage at the expense of mutagenesis. Gene deletion studies showed although dpo1 is essential, the remaining three genes are dispensable. Furthermore, although Dpo4 functions in housekeeping translesion DNA synthesis (TLS), Dpo2, a B-family DNA polymerase once predicted to be inactive, functions as a damage-inducible TLS enzyme solely responsible for targeted mutagenesis, facilitating GC to AT/TA conversions in the process. Together, our data indicate that Dpo2 is the main DNA polymerase responsible for DNA damage tolerance and is the primary source of targeted mutagenesis. Given that crenarchaea encoding a Dpo2 also have a low-GC composition genome, the Dpo2-dependent DNA repair pathway may be conserved in this archaeal lineage. Frontiers Media S.A. 2020-07-23 /pmc/articles/PMC7390963/ /pubmed/32793138 http://dx.doi.org/10.3389/fmicb.2020.01585 Text en Copyright © 2020 Feng, Liu, Xu, Zhao, Feng, Liao, Han and She. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Feng, Xu
Liu, Xiaotong
Xu, Ruyi
Zhao, Ruiliang
Feng, Wenqian
Liao, Jianglan
Han, Wenyuan
She, Qunxin
A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
title A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
title_full A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
title_fullStr A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
title_full_unstemmed A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
title_short A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
title_sort unique b-family dna polymerase facilitating error-prone dna damage tolerance in crenarchaeota
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7390963/
https://www.ncbi.nlm.nih.gov/pubmed/32793138
http://dx.doi.org/10.3389/fmicb.2020.01585
work_keys_str_mv AT fengxu auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT liuxiaotong auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT xuruyi auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT zhaoruiliang auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT fengwenqian auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT liaojianglan auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT hanwenyuan auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT shequnxin auniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT fengxu uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT liuxiaotong uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT xuruyi uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT zhaoruiliang uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT fengwenqian uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT liaojianglan uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT hanwenyuan uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota
AT shequnxin uniquebfamilydnapolymerasefacilitatingerrorpronednadamagetoleranceincrenarchaeota