Cargando…
Exploring the Privacy-Preserving Properties of Word Embeddings: Algorithmic Validation Study
BACKGROUND: Word embeddings are dense numeric vectors used to represent language in neural networks. Until recently, there had been no publicly released embeddings trained on clinical data. Our work is the first to study the privacy implications of releasing these models. OBJECTIVE: This paper aims...
Autores principales: | Abdalla, Mohamed, Abdalla, Moustafa, Hirst, Graeme, Rudzicz, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391163/ https://www.ncbi.nlm.nih.gov/pubmed/32673230 http://dx.doi.org/10.2196/18055 |
Ejemplares similares
-
Using word embeddings to improve the privacy of clinical notes
por: Abdalla, Mohamed, et al.
Publicado: (2020) -
Cross-lingual word embeddings
por: Søgaard, Anders, et al.
Publicado: (2019) -
Privacy-Preserving Predictive Modeling: Harmonization of Contextual Embeddings From Different Sources
por: Huang, Yingxiang, et al.
Publicado: (2018) -
Privacy-Preserving Anonymity for Periodical Releases of Spontaneous Adverse Drug Event Reporting Data: Algorithm Development and Validation
por: Wang, Jie-Teng, et al.
Publicado: (2021) -
Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of Federated Learning, Differential Privacy, and External Attacks
por: Shen, Alexander, et al.
Publicado: (2023)