Cargando…
Real-World Integration of a Sepsis Deep Learning Technology Into Routine Clinical Care: Implementation Study
BACKGROUND: Successful integrations of machine learning into routine clinical care are exceedingly rare, and barriers to its adoption are poorly characterized in the literature. OBJECTIVE: This study aims to report a quality improvement effort to integrate a deep learning sepsis detection and manage...
Autores principales: | Sendak, Mark P, Ratliff, William, Sarro, Dina, Alderton, Elizabeth, Futoma, Joseph, Gao, Michael, Nichols, Marshall, Revoir, Mike, Yashar, Faraz, Miller, Corinne, Kester, Kelly, Sandhu, Sahil, Corey, Kristin, Brajer, Nathan, Tan, Christelle, Lin, Anthony, Brown, Tres, Engelbosch, Susan, Anstrom, Kevin, Elish, Madeleine Clare, Heller, Katherine, Donohoe, Rebecca, Theiling, Jason, Poon, Eric, Balu, Suresh, Bedoya, Armando, O'Brien, Cara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391165/ https://www.ncbi.nlm.nih.gov/pubmed/32673244 http://dx.doi.org/10.2196/15182 |
Ejemplares similares
-
Integrating a Machine Learning System Into Clinical Workflows: Qualitative Study
por: Sandhu, Sahil, et al.
Publicado: (2020) -
Machine learning for early detection of sepsis: an internal and temporal validation study
por: Bedoya, Armando D, et al.
Publicado: (2020) -
Accelerating health system innovation: principles and practices from the Duke Institute for Health Innovation
por: Sandhu, Sahil, et al.
Publicado: (2023) -
Presenting machine learning model information to clinical end users with model facts labels
por: Sendak, Mark P., et al.
Publicado: (2020) -
Machine Learning in Health Care: A Critical Appraisal of Challenges and Opportunities
por: Sendak, Mark, et al.
Publicado: (2019)