Cargando…
Ocean Alkalinity, Buffering and Biogeochemical Processes
Alkalinity, the excess of proton acceptors over donors, plays a major role in ocean chemistry, in buffering and in calcium carbonate precipitation and dissolution. Understanding alkalinity dynamics is pivotal to quantify ocean carbon dioxide uptake during times of global change. Here we review ocean...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391262/ https://www.ncbi.nlm.nih.gov/pubmed/32879922 http://dx.doi.org/10.1029/2019RG000681 |
_version_ | 1783564602433339392 |
---|---|
author | Middelburg, Jack J. Soetaert, Karline Hagens, Mathilde |
author_facet | Middelburg, Jack J. Soetaert, Karline Hagens, Mathilde |
author_sort | Middelburg, Jack J. |
collection | PubMed |
description | Alkalinity, the excess of proton acceptors over donors, plays a major role in ocean chemistry, in buffering and in calcium carbonate precipitation and dissolution. Understanding alkalinity dynamics is pivotal to quantify ocean carbon dioxide uptake during times of global change. Here we review ocean alkalinity and its role in ocean buffering as well as the biogeochemical processes governing alkalinity and pH in the ocean. We show that it is important to distinguish between measurable titration alkalinity and charge balance alkalinity that is used to quantify calcification and carbonate dissolution and needed to understand the impact of biogeochemical processes on components of the carbon dioxide system. A general treatment of ocean buffering and quantification via sensitivity factors is presented and used to link existing buffer and sensitivity factors. The impact of individual biogeochemical processes on ocean alkalinity and pH is discussed and quantified using these sensitivity factors. Processes governing ocean alkalinity on longer time scales such as carbonate compensation, (reversed) silicate weathering, and anaerobic mineralization are discussed and used to derive a close‐to‐balance ocean alkalinity budget for the modern ocean. |
format | Online Article Text |
id | pubmed-7391262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-73912622020-08-31 Ocean Alkalinity, Buffering and Biogeochemical Processes Middelburg, Jack J. Soetaert, Karline Hagens, Mathilde Rev Geophys Review Articles Alkalinity, the excess of proton acceptors over donors, plays a major role in ocean chemistry, in buffering and in calcium carbonate precipitation and dissolution. Understanding alkalinity dynamics is pivotal to quantify ocean carbon dioxide uptake during times of global change. Here we review ocean alkalinity and its role in ocean buffering as well as the biogeochemical processes governing alkalinity and pH in the ocean. We show that it is important to distinguish between measurable titration alkalinity and charge balance alkalinity that is used to quantify calcification and carbonate dissolution and needed to understand the impact of biogeochemical processes on components of the carbon dioxide system. A general treatment of ocean buffering and quantification via sensitivity factors is presented and used to link existing buffer and sensitivity factors. The impact of individual biogeochemical processes on ocean alkalinity and pH is discussed and quantified using these sensitivity factors. Processes governing ocean alkalinity on longer time scales such as carbonate compensation, (reversed) silicate weathering, and anaerobic mineralization are discussed and used to derive a close‐to‐balance ocean alkalinity budget for the modern ocean. John Wiley and Sons Inc. 2020-09 /pmc/articles/PMC7391262/ /pubmed/32879922 http://dx.doi.org/10.1029/2019RG000681 Text en ©2020. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Articles Middelburg, Jack J. Soetaert, Karline Hagens, Mathilde Ocean Alkalinity, Buffering and Biogeochemical Processes |
title | Ocean Alkalinity, Buffering and Biogeochemical Processes |
title_full | Ocean Alkalinity, Buffering and Biogeochemical Processes |
title_fullStr | Ocean Alkalinity, Buffering and Biogeochemical Processes |
title_full_unstemmed | Ocean Alkalinity, Buffering and Biogeochemical Processes |
title_short | Ocean Alkalinity, Buffering and Biogeochemical Processes |
title_sort | ocean alkalinity, buffering and biogeochemical processes |
topic | Review Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391262/ https://www.ncbi.nlm.nih.gov/pubmed/32879922 http://dx.doi.org/10.1029/2019RG000681 |
work_keys_str_mv | AT middelburgjackj oceanalkalinitybufferingandbiogeochemicalprocesses AT soetaertkarline oceanalkalinitybufferingandbiogeochemicalprocesses AT hagensmathilde oceanalkalinitybufferingandbiogeochemicalprocesses |