Cargando…
Effects of embryo energy, egg size, and larval food supply on the development of asteroid echinoderms
Organisms have limited resources available to invest in reproduction, causing a trade‐off between the number and size of offspring. One consequence of this trade‐off is the evolution of disparate egg sizes and, by extension, developmental modes. In particular, echinoid echinoderms (sea urchins and s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391326/ https://www.ncbi.nlm.nih.gov/pubmed/32760568 http://dx.doi.org/10.1002/ece3.6511 |
Sumario: | Organisms have limited resources available to invest in reproduction, causing a trade‐off between the number and size of offspring. One consequence of this trade‐off is the evolution of disparate egg sizes and, by extension, developmental modes. In particular, echinoid echinoderms (sea urchins and sand dollars) have been widely used to experimentally manipulate how changes in egg size affect development. Here, we test the generality of the echinoid results by (a) using laser ablations of blastomeres to experimentally reduce embryo energy in the asteroid echinoderms (sea stars), Pisaster ochraceus and Asterias forbesi and (b) comparing naturally produced, variably sized eggs (1.7‐fold volume difference between large and small eggs) in A. forbesi. In P. ochraceus and A. forbesi, there were no significant differences between juveniles from both experimentally reduced embryos and naturally produced eggs of variable size. However, in both embryo reduction and egg size variation experiments, simultaneous reductions in larval food had a significant and large effect on larval and juvenile development. These results indicate that (a) food levels are more important than embryo energy or egg size in determining larval and juvenile quality in sea stars and (b) the relative importance of embryo energy or egg size to fundamental life history parameters (time to and size at metamorphosis) does not appear to be consistent within echinoderms. |
---|