Cargando…

Identifying Antioxidant Proteins by Combining Multiple Methods

Antioxidant proteins play important roles in preventing free radical oxidation from damaging cells and DNA. They have become ideal candidates of disease prevention and treatment. Therefore, it is urgent to identify antioxidants from natural compounds. Since experimental methods are still cost ineffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xianhai, Tang, Qiang, Tang, Hua, Chen, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7391787/
https://www.ncbi.nlm.nih.gov/pubmed/32793581
http://dx.doi.org/10.3389/fbioe.2020.00858
Descripción
Sumario:Antioxidant proteins play important roles in preventing free radical oxidation from damaging cells and DNA. They have become ideal candidates of disease prevention and treatment. Therefore, it is urgent to identify antioxidants from natural compounds. Since experimental methods are still cost ineffective, a series of computational methods have been proposed to identify antioxidant proteins. However, the performance of the current methods are still not satisfactory. In this study, a support vector machine based method, called Vote9, was proposed to identify antioxidants, in which the sequences were encoded by using the features generated from 9 optimal individual models. Results from jackknife test demonstrated that Vote9 is comparable with the best one of the existing predictors for this task. We hope that Vote9 will become a useful tool or at least can play a complementary role to the existing methods for identifying antioxidants.