Cargando…

Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression

Background: As a histone demethylase, JMJD2D can enhance gene expression by specifically demethylating H3K9me2/3 and plays an important role in promoting colorectal cancer progression. However, its role in liver cancer remains unclear. Methods: The expression of JMJD2D was examined in human liver ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ming, Deng, Yuan, Zhuo, Minghui, Zhou, Hui, Kong, Xu, Xia, Xiaogang, Su, Zhaojie, Chen, Qiang, Guo, Peng, Mo, Pingli, Yu, Chundong, Li, Wengang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392006/
https://www.ncbi.nlm.nih.gov/pubmed/32754284
http://dx.doi.org/10.7150/thno.45581
_version_ 1783564763399192576
author Li, Ming
Deng, Yuan
Zhuo, Minghui
Zhou, Hui
Kong, Xu
Xia, Xiaogang
Su, Zhaojie
Chen, Qiang
Guo, Peng
Mo, Pingli
Yu, Chundong
Li, Wengang
author_facet Li, Ming
Deng, Yuan
Zhuo, Minghui
Zhou, Hui
Kong, Xu
Xia, Xiaogang
Su, Zhaojie
Chen, Qiang
Guo, Peng
Mo, Pingli
Yu, Chundong
Li, Wengang
author_sort Li, Ming
collection PubMed
description Background: As a histone demethylase, JMJD2D can enhance gene expression by specifically demethylating H3K9me2/3 and plays an important role in promoting colorectal cancer progression. However, its role in liver cancer remains unclear. Methods: The expression of JMJD2D was examined in human liver cancer specimens and non-tumorous liver tissues by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in liver cancer cells using small hairpin RNAs, and cells were analyzed with Western blot, real-time PCR, cell viability, colony formation, and flow cytometry assays. Cells were also grown as tumor xenografts in nude mice, and the tumor cell proliferation and apoptosis were measured by immunohistochemical analysis. The relationship between JMJD2D and p53 was studied by co-immunoprecipitation, chromatin immunoprecipitation, and electric mobility shift assay. Wild-type and JMJD2D-knockout mice were intraperitoneally injected with diethylnitrosamine (DEN) to induce liver tumors and the liver cancer initiation and progression were investigated. Results: JMJD2D was frequently upregulated in human liver cancer specimens compared with non-tumorous liver tissues. The overall survival of liver cancer patients with high JMJD2D expression was significantly decreased compared to that with low JMJD2D expression. JMJD2D knockdown reduced liver cancer cell proliferation and xenograft tumor growth, sensitized cells to chemotherapeutic drug-induced apoptosis, and increased the expression of cell cycle inhibitor p21 and pro-apoptosis gene PUMA. Genetically, JMJD2D deficiency protected mice against DEN-induced liver cancer initiation and progression. Knockout of tumor suppressor p53 significantly reduced the effects of JMJD2D knockdown on cell proliferation, apoptosis, and the expression of p21 and PUMA, suggesting that JMJD2D regulates liver cancer cell functions in part through inhibiting p53 signaling pathway. Mechanistically, JMJD2D directly interacted with p53 and inhibited p53 recruitment to the p21 and PUMA promoters in a demethylation activity-independent manner, implicating a demethylase-independent function of JMJD2D as a novel p53 antagonist. In addition, JMJD2D could activate Wnt/β-catenin signaling to promote liver cancer cell proliferation. Conclusion: Our study demonstrates that JMJD2D can antagonize the tumor suppressor p53 and activate an oncogenic signaling pathway (such as Wnt/β-catenin signaling pathway) simultaneously to promote liver cancer initiation and progression, suggesting that JMJD2D may serve as a novel target for liver cancer treatment.
format Online
Article
Text
id pubmed-7392006
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-73920062020-08-03 Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression Li, Ming Deng, Yuan Zhuo, Minghui Zhou, Hui Kong, Xu Xia, Xiaogang Su, Zhaojie Chen, Qiang Guo, Peng Mo, Pingli Yu, Chundong Li, Wengang Theranostics Research Paper Background: As a histone demethylase, JMJD2D can enhance gene expression by specifically demethylating H3K9me2/3 and plays an important role in promoting colorectal cancer progression. However, its role in liver cancer remains unclear. Methods: The expression of JMJD2D was examined in human liver cancer specimens and non-tumorous liver tissues by immunohistochemical or immunoblot analysis. JMJD2D expression was knocked down in liver cancer cells using small hairpin RNAs, and cells were analyzed with Western blot, real-time PCR, cell viability, colony formation, and flow cytometry assays. Cells were also grown as tumor xenografts in nude mice, and the tumor cell proliferation and apoptosis were measured by immunohistochemical analysis. The relationship between JMJD2D and p53 was studied by co-immunoprecipitation, chromatin immunoprecipitation, and electric mobility shift assay. Wild-type and JMJD2D-knockout mice were intraperitoneally injected with diethylnitrosamine (DEN) to induce liver tumors and the liver cancer initiation and progression were investigated. Results: JMJD2D was frequently upregulated in human liver cancer specimens compared with non-tumorous liver tissues. The overall survival of liver cancer patients with high JMJD2D expression was significantly decreased compared to that with low JMJD2D expression. JMJD2D knockdown reduced liver cancer cell proliferation and xenograft tumor growth, sensitized cells to chemotherapeutic drug-induced apoptosis, and increased the expression of cell cycle inhibitor p21 and pro-apoptosis gene PUMA. Genetically, JMJD2D deficiency protected mice against DEN-induced liver cancer initiation and progression. Knockout of tumor suppressor p53 significantly reduced the effects of JMJD2D knockdown on cell proliferation, apoptosis, and the expression of p21 and PUMA, suggesting that JMJD2D regulates liver cancer cell functions in part through inhibiting p53 signaling pathway. Mechanistically, JMJD2D directly interacted with p53 and inhibited p53 recruitment to the p21 and PUMA promoters in a demethylation activity-independent manner, implicating a demethylase-independent function of JMJD2D as a novel p53 antagonist. In addition, JMJD2D could activate Wnt/β-catenin signaling to promote liver cancer cell proliferation. Conclusion: Our study demonstrates that JMJD2D can antagonize the tumor suppressor p53 and activate an oncogenic signaling pathway (such as Wnt/β-catenin signaling pathway) simultaneously to promote liver cancer initiation and progression, suggesting that JMJD2D may serve as a novel target for liver cancer treatment. Ivyspring International Publisher 2020-07-11 /pmc/articles/PMC7392006/ /pubmed/32754284 http://dx.doi.org/10.7150/thno.45581 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Li, Ming
Deng, Yuan
Zhuo, Minghui
Zhou, Hui
Kong, Xu
Xia, Xiaogang
Su, Zhaojie
Chen, Qiang
Guo, Peng
Mo, Pingli
Yu, Chundong
Li, Wengang
Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression
title Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression
title_full Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression
title_fullStr Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression
title_full_unstemmed Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression
title_short Demethylase-independent function of JMJD2D as a novel antagonist of p53 to promote Liver Cancer initiation and progression
title_sort demethylase-independent function of jmjd2d as a novel antagonist of p53 to promote liver cancer initiation and progression
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392006/
https://www.ncbi.nlm.nih.gov/pubmed/32754284
http://dx.doi.org/10.7150/thno.45581
work_keys_str_mv AT liming demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT dengyuan demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT zhuominghui demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT zhouhui demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT kongxu demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT xiaxiaogang demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT suzhaojie demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT chenqiang demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT guopeng demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT mopingli demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT yuchundong demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression
AT liwengang demethylaseindependentfunctionofjmjd2dasanovelantagonistofp53topromotelivercancerinitiationandprogression