Cargando…

Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer

Rationale: The prognosis of gastric cancer (GC) patients is poor, and there is limited therapeutic efficacy due to genetic heterogeneity and difficulty in early-stage screening. Here, we developed and validated an individualized gene set-based prognostic signature for gastric cancer (GPSGC) and furt...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Wang-Yu, Dong, Zi-Nan, Fu, Xiao-Teng, Lin, Ling-Yun, Wang, Lin, Ye, Guo-Dong, Luo, Qi-Cong, Chen, Yu-Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392024/
https://www.ncbi.nlm.nih.gov/pubmed/32754268
http://dx.doi.org/10.7150/thno.47938
_version_ 1783564767789580288
author Cai, Wang-Yu
Dong, Zi-Nan
Fu, Xiao-Teng
Lin, Ling-Yun
Wang, Lin
Ye, Guo-Dong
Luo, Qi-Cong
Chen, Yu-Chao
author_facet Cai, Wang-Yu
Dong, Zi-Nan
Fu, Xiao-Teng
Lin, Ling-Yun
Wang, Lin
Ye, Guo-Dong
Luo, Qi-Cong
Chen, Yu-Chao
author_sort Cai, Wang-Yu
collection PubMed
description Rationale: The prognosis of gastric cancer (GC) patients is poor, and there is limited therapeutic efficacy due to genetic heterogeneity and difficulty in early-stage screening. Here, we developed and validated an individualized gene set-based prognostic signature for gastric cancer (GPSGC) and further explored survival-related regulatory mechanisms as well as therapeutic targets in GC. Methods: By implementing machine learning, a prognostic model was established based on gastric cancer gene expression datasets from 1699 patients from five independent cohorts with reported full clinical annotations. Analysis of the tumor microenvironment, including stromal and immune subcomponents, cell types, panimmune gene sets, and immunomodulatory genes, was carried out in 834 GC patients from three independent cohorts to explore regulatory survival mechanisms and therapeutic targets related to the GPSGC. To prove the stability and reliability of the GPSGC model and therapeutic targets, multiplex fluorescent immunohistochemistry was conducted with tissue microarrays representing 186 GC patients. Based on multivariate Cox analysis, a nomogram that integrated the GPSGC and other clinical risk factors was constructed with two training cohorts and was verified by two validation cohorts. Results: Through machine learning, we obtained an optimal risk assessment model, the GPSGC, which showed higher accuracy in predicting survival than individual prognostic factors. The impact of the GPSGC score on poor survival of GC patients was probably correlated with the remodeling of stromal components in the tumor microenvironment. Specifically, TGFβ and angiogenesis-related gene sets were significantly associated with the GPSGC risk score and poor outcome. Immunomodulatory gene analysis combined with experimental verification further revealed that TGFβ1 and VEGFB may be developed as potential therapeutic targets of GC patients with poor prognosis according to the GPSGC. Furthermore, we developed a nomogram based on the GPSGC and other clinical variables to predict the 3-year and 5-year overall survival for GC patients, which showed improved prognostic accuracy than clinical characteristics only. Conclusion: As a tumor microenvironment-relevant gene set-based prognostic signature, the GPSGC model provides an effective approach to evaluate GC patient survival outcomes and may prolong overall survival by enabling the selection of individualized targeted therapy.
format Online
Article
Text
id pubmed-7392024
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Ivyspring International Publisher
record_format MEDLINE/PubMed
spelling pubmed-73920242020-08-03 Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer Cai, Wang-Yu Dong, Zi-Nan Fu, Xiao-Teng Lin, Ling-Yun Wang, Lin Ye, Guo-Dong Luo, Qi-Cong Chen, Yu-Chao Theranostics Research Paper Rationale: The prognosis of gastric cancer (GC) patients is poor, and there is limited therapeutic efficacy due to genetic heterogeneity and difficulty in early-stage screening. Here, we developed and validated an individualized gene set-based prognostic signature for gastric cancer (GPSGC) and further explored survival-related regulatory mechanisms as well as therapeutic targets in GC. Methods: By implementing machine learning, a prognostic model was established based on gastric cancer gene expression datasets from 1699 patients from five independent cohorts with reported full clinical annotations. Analysis of the tumor microenvironment, including stromal and immune subcomponents, cell types, panimmune gene sets, and immunomodulatory genes, was carried out in 834 GC patients from three independent cohorts to explore regulatory survival mechanisms and therapeutic targets related to the GPSGC. To prove the stability and reliability of the GPSGC model and therapeutic targets, multiplex fluorescent immunohistochemistry was conducted with tissue microarrays representing 186 GC patients. Based on multivariate Cox analysis, a nomogram that integrated the GPSGC and other clinical risk factors was constructed with two training cohorts and was verified by two validation cohorts. Results: Through machine learning, we obtained an optimal risk assessment model, the GPSGC, which showed higher accuracy in predicting survival than individual prognostic factors. The impact of the GPSGC score on poor survival of GC patients was probably correlated with the remodeling of stromal components in the tumor microenvironment. Specifically, TGFβ and angiogenesis-related gene sets were significantly associated with the GPSGC risk score and poor outcome. Immunomodulatory gene analysis combined with experimental verification further revealed that TGFβ1 and VEGFB may be developed as potential therapeutic targets of GC patients with poor prognosis according to the GPSGC. Furthermore, we developed a nomogram based on the GPSGC and other clinical variables to predict the 3-year and 5-year overall survival for GC patients, which showed improved prognostic accuracy than clinical characteristics only. Conclusion: As a tumor microenvironment-relevant gene set-based prognostic signature, the GPSGC model provides an effective approach to evaluate GC patient survival outcomes and may prolong overall survival by enabling the selection of individualized targeted therapy. Ivyspring International Publisher 2020-07-09 /pmc/articles/PMC7392024/ /pubmed/32754268 http://dx.doi.org/10.7150/thno.47938 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.
spellingShingle Research Paper
Cai, Wang-Yu
Dong, Zi-Nan
Fu, Xiao-Teng
Lin, Ling-Yun
Wang, Lin
Ye, Guo-Dong
Luo, Qi-Cong
Chen, Yu-Chao
Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer
title Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer
title_full Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer
title_fullStr Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer
title_full_unstemmed Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer
title_short Identification of a Tumor Microenvironment-relevant Gene set-based Prognostic Signature and Related Therapy Targets in Gastric Cancer
title_sort identification of a tumor microenvironment-relevant gene set-based prognostic signature and related therapy targets in gastric cancer
topic Research Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392024/
https://www.ncbi.nlm.nih.gov/pubmed/32754268
http://dx.doi.org/10.7150/thno.47938
work_keys_str_mv AT caiwangyu identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT dongzinan identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT fuxiaoteng identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT linlingyun identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT wanglin identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT yeguodong identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT luoqicong identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer
AT chenyuchao identificationofatumormicroenvironmentrelevantgenesetbasedprognosticsignatureandrelatedtherapytargetsingastriccancer