Cargando…
Automated Assessment and Tracking of COVID-19 Pulmonary Disease Severity on Chest Radiographs using Convolutional Siamese Neural Networks
PURPOSE: To develop an automated measure of COVID-19 pulmonary disease severity on chest radiographs (CXRs), for longitudinal disease tracking and outcome prediction. MATERIALS AND METHODS: A convolutional Siamese neural network-based algorithm was trained to output a measure of pulmonary disease se...
Autores principales: | Li, Matthew D., Arun, Nishanth Thumbavanam, Gidwani, Mishka, Chang, Ken, Deng, Francis, Little, Brent P., Mendoza, Dexter P., Lang, Min, Lee, Susanna I., O’Shea, Aileen, Parakh, Anushri, Singh, Praveer, Kalpathy-Cramer, Jayashree |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Radiological Society of North America
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392327/ https://www.ncbi.nlm.nih.gov/pubmed/33928256 http://dx.doi.org/10.1148/ryai.2020200079 |
Ejemplares similares
-
Intubation and mortality prediction in hospitalized COVID-19 patients using a combination of convolutional neural network-based scoring of chest radiographs and clinical data
por: O'Shea, Aileen, et al.
Publicado: (2022) -
Multi-population generalizability of a deep learning-based chest radiograph severity score for COVID-19
por: Li, Matthew D., et al.
Publicado: (2022) -
Multi-Radiologist User Study for Artificial Intelligence-Guided Grading of COVID-19 Lung Disease Severity on Chest Radiographs
por: Li, Matthew D., et al.
Publicado: (2021) -
Siamese neural networks for continuous disease severity evaluation and change detection in medical imaging
por: Li, Matthew D., et al.
Publicado: (2020) -
Artificial Intelligence and Glaucoma: Going Back to Basics
por: AlRyalat, Saif Aldeen, et al.
Publicado: (2023)