Cargando…
Design of reinforcement learning for perimeter control using network transmission model based macroscopic traffic simulation
Perimeter control is an emerging alternative for traffic signal control, which regulates the traffic flows on the periphery of a road network. Some model-based approaches have been suggested earlier for the optimization of perimeter control based on macroscopic fundamental diagrams (MFDs). However,...
Autores principales: | Yoon, Jinwon, Kim, Sunghoon, Byon, Young-Ji, Yeo, Hwasoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392337/ https://www.ncbi.nlm.nih.gov/pubmed/32730334 http://dx.doi.org/10.1371/journal.pone.0236655 |
Ejemplares similares
-
Measuring health of highway network configuration against dynamic Origin-Destination demand network using weighted complex network analysis
por: Tak, Sehyun, et al.
Publicado: (2018) -
Correction: Enhancing healthcare accessibility measurements using GIS: A case study in Seoul, Korea
por: Kim, Yeeun, et al.
Publicado: (2018) -
Enhancing healthcare accessibility measurements using GIS: A case study in Seoul, Korea
por: Kim, Yeeun, et al.
Publicado: (2018) -
Perimeter Control Method of Road Traffic Regions Based on MFD-DDPG
por: Zheng, Guorong, et al.
Publicado: (2023) -
Inside network perimeter security
por: Northcutt, Stephen
Publicado: (2005)