Cargando…

A novel riboswitch classification based on imbalanced sequences achieved by machine learning

Riboswitch, a part of regulatory mRNA (50–250nt in length), has two main classes: aptamer and expression platform. One of the main challenges raised during the classification of riboswitch is imbalanced data. That is a circumstance in which the records of a sequences of one group are very small comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Beyene, Solomon Shiferaw, Ling, Tianyi, Ristevski, Blagoj, Chen, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392346/
https://www.ncbi.nlm.nih.gov/pubmed/32687488
http://dx.doi.org/10.1371/journal.pcbi.1007760
Descripción
Sumario:Riboswitch, a part of regulatory mRNA (50–250nt in length), has two main classes: aptamer and expression platform. One of the main challenges raised during the classification of riboswitch is imbalanced data. That is a circumstance in which the records of a sequences of one group are very small compared to the others. Such circumstances lead classifier to ignore minority group and emphasize on majority ones, which results in a skewed classification. We considered sixteen riboswitch families, to be in accord with recent riboswitch classification work, that contain imbalanced sequences. The sequences were split into training and test set using a newly developed pipeline. From 5460 k-mers (k value 1 to 6) produced, 156 features were calculated based on CfsSubsetEval and BestFirst function found in WEKA 3.8. Statistically tested result was significantly difference between balanced and imbalanced sequences (p < 0.05). Besides, each algorithm also showed a significant difference in sensitivity, specificity, accuracy, and macro F-score when used in both groups (p < 0.05). Several k-mers clustered from heat map were discovered to have biological functions and motifs at the different positions like interior loops, terminal loops and helices. They were validated to have a biological function and some are riboswitch motifs. The analysis has discovered the importance of solving the challenges of majority bias analysis and overfitting. Presented results were generalized evaluation of both balanced and imbalanced models, which implies their ability of classifying, to classify novel riboswitches. The Python source code is available at https://github.com/Seasonsling/riboswitch.