Cargando…

PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas

BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution i...

Descripción completa

Detalles Bibliográficos
Autores principales: Noorani, Imran, de la Rosa, Jorge, Choi, Yoonha, Strong, Alexander, Ponstingl, Hannes, Vijayabaskar, M. S., Lee, Jusung, Lee, Eunmin, Richard-Londt, Angela, Friedrich, Mathias, Furlanetto, Federica, Fuente, Rocio, Banerjee, Ruby, Yang, Fengtang, Law, Frances, Watts, Colin, Rad, Roland, Vassiliou, George, Kim, Jong Kyoung, Santarius, Thomas, Brandner, Sebastian, Bradley, Allan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392733/
https://www.ncbi.nlm.nih.gov/pubmed/32727536
http://dx.doi.org/10.1186/s13059-020-02092-2
_version_ 1783564906439639040
author Noorani, Imran
de la Rosa, Jorge
Choi, Yoonha
Strong, Alexander
Ponstingl, Hannes
Vijayabaskar, M. S.
Lee, Jusung
Lee, Eunmin
Richard-Londt, Angela
Friedrich, Mathias
Furlanetto, Federica
Fuente, Rocio
Banerjee, Ruby
Yang, Fengtang
Law, Frances
Watts, Colin
Rad, Roland
Vassiliou, George
Kim, Jong Kyoung
Santarius, Thomas
Brandner, Sebastian
Bradley, Allan
author_facet Noorani, Imran
de la Rosa, Jorge
Choi, Yoonha
Strong, Alexander
Ponstingl, Hannes
Vijayabaskar, M. S.
Lee, Jusung
Lee, Eunmin
Richard-Londt, Angela
Friedrich, Mathias
Furlanetto, Federica
Fuente, Rocio
Banerjee, Ruby
Yang, Fengtang
Law, Frances
Watts, Colin
Rad, Roland
Vassiliou, George
Kim, Jong Kyoung
Santarius, Thomas
Brandner, Sebastian
Bradley, Allan
author_sort Noorani, Imran
collection PubMed
description BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. CONCLUSION: Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis.
format Online
Article
Text
id pubmed-7392733
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-73927332020-08-04 PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas Noorani, Imran de la Rosa, Jorge Choi, Yoonha Strong, Alexander Ponstingl, Hannes Vijayabaskar, M. S. Lee, Jusung Lee, Eunmin Richard-Londt, Angela Friedrich, Mathias Furlanetto, Federica Fuente, Rocio Banerjee, Ruby Yang, Fengtang Law, Frances Watts, Colin Rad, Roland Vassiliou, George Kim, Jong Kyoung Santarius, Thomas Brandner, Sebastian Bradley, Allan Genome Biol Research BACKGROUND: Glioma is the most common intrinsic brain tumor and also occurs in the spinal cord. Activating EGFR mutations are common in IDH1 wild-type gliomas. However, the cooperative partners of EGFR driving gliomagenesis remain poorly understood. RESULTS: We explore EGFR-mutant glioma evolution in conditional mutant mice by whole-exome sequencing, transposon mutagenesis forward genetic screening, and transcriptomics. We show mutant EGFR is sufficient to initiate gliomagenesis in vivo, both in the brain and spinal cord. We identify significantly recurrent somatic alterations in these gliomas including mutant EGFR amplifications and Sub1, Trp53, and Tead2 loss-of-function mutations. Comprehensive functional characterization of 96 gliomas by genome-wide piggyBac insertional mutagenesis in vivo identifies 281 known and novel EGFR-cooperating driver genes, including Cdkn2a, Nf1, Spred1, and Nav3. Transcriptomics confirms transposon-mediated effects on expression of these genes. We validate the clinical relevance of new putative tumor suppressors by showing these are frequently altered in patients’ gliomas, with prognostic implications. We discover shared and distinct driver mutations in brain and spinal gliomas and confirm in vivo differential tumor suppressive effects of Pten between these tumors. Functional validation with CRISPR-Cas9-induced mutations in novel genes Tead2, Spred1, and Nav3 demonstrates heightened EGFRvIII-glioma cell proliferation. Chemogenomic analysis of mutated glioma genes reveals potential drug targets, with several investigational drugs showing efficacy in vitro. CONCLUSION: Our work elucidates functional driver landscapes of EGFR-mutant gliomas, uncovering potential therapeutic strategies, and provides new tools for functional interrogation of gliomagenesis. BioMed Central 2020-07-30 /pmc/articles/PMC7392733/ /pubmed/32727536 http://dx.doi.org/10.1186/s13059-020-02092-2 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research
Noorani, Imran
de la Rosa, Jorge
Choi, Yoonha
Strong, Alexander
Ponstingl, Hannes
Vijayabaskar, M. S.
Lee, Jusung
Lee, Eunmin
Richard-Londt, Angela
Friedrich, Mathias
Furlanetto, Federica
Fuente, Rocio
Banerjee, Ruby
Yang, Fengtang
Law, Frances
Watts, Colin
Rad, Roland
Vassiliou, George
Kim, Jong Kyoung
Santarius, Thomas
Brandner, Sebastian
Bradley, Allan
PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas
title PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas
title_full PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas
title_fullStr PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas
title_full_unstemmed PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas
title_short PiggyBac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of EGFR-mutant gliomas
title_sort piggybac mutagenesis and exome sequencing identify genetic driver landscapes and potential therapeutic targets of egfr-mutant gliomas
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7392733/
https://www.ncbi.nlm.nih.gov/pubmed/32727536
http://dx.doi.org/10.1186/s13059-020-02092-2
work_keys_str_mv AT nooraniimran piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT delarosajorge piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT choiyoonha piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT strongalexander piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT ponstinglhannes piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT vijayabaskarms piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT leejusung piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT leeeunmin piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT richardlondtangela piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT friedrichmathias piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT furlanettofederica piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT fuenterocio piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT banerjeeruby piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT yangfengtang piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT lawfrances piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT wattscolin piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT radroland piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT vassiliougeorge piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT kimjongkyoung piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT santariusthomas piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT brandnersebastian piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas
AT bradleyallan piggybacmutagenesisandexomesequencingidentifygeneticdriverlandscapesandpotentialtherapeutictargetsofegfrmutantgliomas